

CL Resin based methods for the separation and determination of CI-36 and I-129 in environmental and decommissioning samples

Outline

≻Scope

➢ Resin characterization

Method optimization

Spiked samples

➤ Summary

Scope

- Interest: monitoring of nuclear facilities for long-lived radionuclides
- CI-36 (and I-129) frequently determined by LSC
 - ➤ CI-36 (3.01 E+04 y, E_{βmax}= 708.6 keV),
 - ➤ I-129 (1.61 E+07 y, E_{βmax}= 151.2 keV)
 - Existing separation methods often complicated and time-consuming
- > Aim:
 - Development and characterization of a suited resin
 - Development of a simple and quick method for separation of CI-36 and I-129 from environmental and decommissioning samples
- Cl and I retained as chloride and iodide
 - Oxidation state adjustment might be necessary (e.g. Sn(II))

Resin characterization – CL resin

\succ Determination of D_w values

➢ For practical reasons in sulfuric acid (Sn(II))

Analyte	D _w	
Mn	<1	
Fe	<1	
Ni	<1	
Со	<1	
Cu	<1	
Zn	25	
Cd	<1	
Ce	4	
Pd	87000	

▷ D_w (Ag):
 ▷ 1M H₂SO₄: 6,5E+05
 ▷ H₂SO₄ (pH 3): 6,0E+05
 ▷ H₂SO₄ (pH 5): 3,5E+05

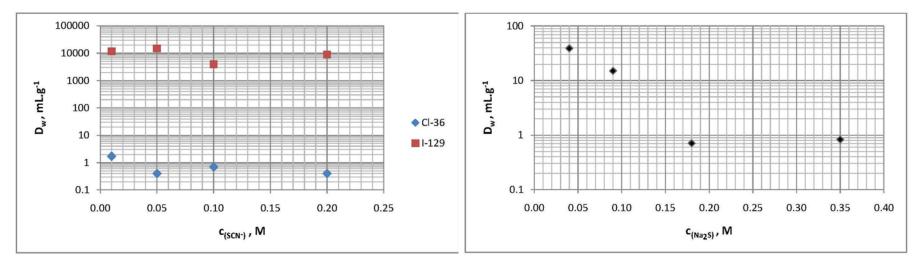
- Ag uptake:
 - > 17 20 mg Ag⁺ per 2 mL column
 - extraction equilibrium reached < 30 min</p>

 D_w values, selected elements, 1M H_2SO_4 , CL resin

- Selective for Pd and Ag (plus other PGE, Au, Hg)
- $> D_w(Ag)$ very high over wide pH range

Resin characterization – Ag⁺ loaded CL resin

- Maximum chloride and iodide uptake evaluated via column experiments (2 mL column loaded with 13 mg Ag⁺)
 - ➤ I: 16.3±1.6mg; CI: 4.3 ±0.2mg
 - Can be increased by using higher Ag⁺ amounts and longer resin / Ag⁺ contact times
- D_w values of chloride and iodide
 - ➢ Extraction conditions: 1M H₂SO₄
 - Elution conditions:
 - Chloride: 0.01 0.2M SCN⁻
 - Iodide: 0.01 0.2M SCN⁻; 0.04 0.35M Na₂S
- Batch experiments

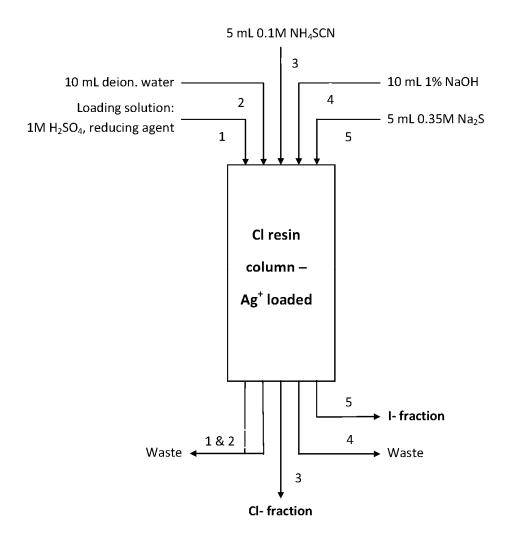

Resin characterization – Ag⁺ loaded CL resin

Isotope	D _w retention
CI-36	1600
I-129	1980

> High uptake of chloride and iodide onto Ag⁺ loaded CL-resin in 1M H_2SO_4

Remark: iodate also retained, chlorate not

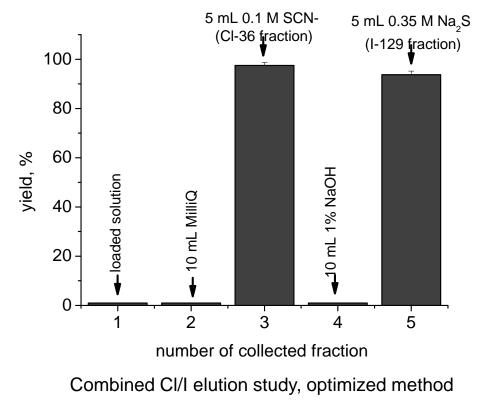
Retention of chloride (^{36}CI) and iodide (^{129}I) in 1M H₂SO₄


 D_w of chloride (^{36}Cl) and iodide (^{129}l) on Ag loaded CL resin at pH 7 and varying SCN- concentrations

 $D_{\rm w}$ of $\,$ iodide (^{129}I) on Ag loaded CL resin at pH 7 and varying Na_2S concentrations

 Chloride: very low D_w at all tested SCN⁻ concentrations
 Iodide: high D_w at all tested SCN⁻ concentrations, low D_w at elevated Na₂S concentrations

Scheme – Optimized method



- Load sample in 1M H₂SO₄
 Less acidic, neutral or slightly alkaline also possible
 Addition of reducing agent if
 - Addition of reducing agent if necessary (e.g. Sn(II))
- Rinse with 10ml of deion. water
- Elute chloride with 5ml of 0.1M SCN⁻
- Rinse with 10ml of 1% NaOH
 > Increases iodide yield
- Elute iodide with 5ml of 0.35M Na_2S

Elution study

➢ Method applied to ³⁶Cl and ¹²⁹I containing solution

- Clean ³⁶Cl / ¹²⁹l separation
- Fractions can be directly measured by LSC

I elution from CL Resin

Decontamination factors (D_f)

	D _f in Cl	D _f in I
Analyte	fraction	fraction
Mn	>210	>370
Со	>170	>1500
Ni	>170	>320
Cu	>210	>190
Sr	>180	>17000
Cd	>6900	>7700
Cs	>200	>6200
Ba	>1000	>600
Pb	>300	>720
U	>1900	>200
Cs-137	>150	>150
Co-60	>320	>320
Sr/Y-90	/Y-90 >180 >´	
CI-36	NA	>160
I-129	>420	NA

Method applied to

- Multi-element solutions
 > ICP-MS
- Cs-137, Co-60, Sr-90, CI-36 or I-129 containing solutions
 ➤ LSC
- Good decontamination factors in SCN⁻ and Na₂S fractions
- Clean I⁻ / Cl⁻ separation

Spiked samples I - water

- 50ml tap water adjusted to $1 \text{M} \text{H}_2 \text{SO}_4$
- Spiked with known activities of CI-36, I-129 respectively
- Each 0.5 mg NaCl and Nal
- Addition of 17Bq of each Co-60, Sr-90 and Cs-137
- Three 10ml aliquots analyzed following optimized method
- Chemical yields obtained in previously performed reproducibility test applied
 - •Determination of chemical yield for each separation via e.g. ion chromatography preferable
- LSC measurement of chloride and iodide fractions

Spiked samples I - water

	determined activities		added a	activities		
I-129	A(I-129)	U _{A(I-129)}	A(I-129)	U _{A(I-129)}	Bias	E
1-129	/ Bq	/ Bq	/ Bq	/ Bq	/ %	E _n
Repl. 1	8,24	1,98	8,22	1,31	0,3%	0,01
Repl. 2	8,17	1,97	8,22	1,31	-0,5%	0,02
Repl. 3	7,86	1,89	8,22	1,31	-4,4%	0,16
CI-36	A(CI-36)	U _{A(CI-36)}	A(CI-36)	U _{A(CI-36)}	Bias	E
CI-30	/ Bq	/ Bq	/ Bq	/ Bq	/ %	En
Repl. 1	8,97	1,05	9,44	0,94	-5,1%	0,34
Repl. 2	9,11	1,06	9,44	0,94	-3,5%	0,23
Repl. 3	9,12	1,06	9,44	0,94	-3,5%	0,23

Comparison determined vs. reference activities, water, 3 replicates, bias and E_n , k=2

> Overall good agreement, slight negative bias for CI-36

Spiked samples II – effluents (Subatech)

- 4 spiked effluent samples
 - ≻CI 0: Blank sample
 - ≻CI 1 and CI2: No I-129, identical CI-36 activities
 - ➤CI 3: CI-36 / I-129 activity ratio 1:1
 - ➤CI 4: CI-36 / I-129 activity ratio 1:10
- Preparation loading solutions:
 - >2.5 mL Standard solution (CI1 CI4)
 - >0.5 mL 0.1M NaCl and 0.5 mL 0.1M Nal
 - ≻6.5 mL 1M H₂SO₄
- CI fraction collected, 5 mL 0.1M NaSCN added
- 10 mL Cocktail
- LSC (TriCarb 3170TR/SL, 12 250 keV, 60min)

Spiked samples II – effluents (Subatech)

Chloride elution

Column loading

Spiked samples II – effluents (Subatech)

		-36 al activity		•		Perkin Elmer TriCarb 3190TR/SL		Compariso activ		
Sample	A (Bq.L ^{.1})	U _A (Bq.L ^{.1})	A (Bq.L ^{.1})	U _A (Bq.L ⁻¹)	tSIE	cpm	A (Bq.L ^{.1})	U _A (Bq.L ⁻¹)	Deviation (%)	Zeta test
CIO	Blank	-	Blank	-	236.3	5.22	< LOD	-	-	-
Cl1	1.873E+04	6.556E+02	0	-	239.8	1774.8	1.809E+04	1.191E+03	-3.44	0.47
CI2	1.873E+04	6.556E+02	0	-	243.9	1871.4	1.905E+04	1.255E+03	1.72	0.23
CI3	1.873E+04	6.556E+02	1.889E+04	5.100E+02	252.0	1865.3	1.806E+04	1.189E+03	-3.57	0.49
Cl4	1.873E+03	6.556E+01	1.897E+04	5.121E+02	254.2	189.85	1.792E+03	1.226E+02	-4.35	0.59

Comparison determined vs. reference activities, effluents, bias and zeta test values

- Very good agreement between theoretical and obtained activity
- Repeatability Cl1/Cl2: 3.7% (N = 2, k = 1)
- Increased I-129 activity not introducing positive bias into CI-36 results
 - Clean chloride / iodide separation

Spiked solid samples

- Filter, soil and concrete samples (each 250 mg)
- Spiked with known activities of CI-36, I-129 respectively
- Extracted with 1M NaOH at 70°C for 4h
- Centrifugation, residue rinsed with 2 mL water
- Supernatants combined, adjusted to 1M H_2SO_4 and filled up to 50 mL
- Analysis of three 10 mL aliquots
- Average extraction and separation yields used for result calculation
 - Determined upfront for given extraction conditions and matrix

Spiked samples III – filter

		determine	d activities	reference	activities		
	¹²⁹ l	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	Bias , %	En
	Repl. 1	7.89	2.82	8.22	1.31	-4.04	0.11
	Repl. 2	8.28	2.96	8.22	1.31	0.78	0.02
	Repl. 3	7.58	2.71	8.22	1.31	-7.79	0.21
filter							
	³⁶ Cl	A(³⁶ Cl) , Bq	U _{A(36CI)} , Bq	A(³⁶ Cl) , Bq	U _{A(36CI)} , Bq	Bias , %	En
	Repl. 1	9.58	1.47	9.44	0.94	1.46	0.08
	Repl. 2	9.20	1.41	9.44	0.94	-2.52	0.14
	Repl. 3	9.70	1.48	9.44	0.94	2.71	0.15

Comparison determined vs. reference activities, filter, 3 replicates, bias and E_n , k=2

> Overall good agreement, slight negative bias for iodide

Spiked samples IV - soil

		determine	d activities	reference	activities		
	¹²⁹ l	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	Bias , %	En
	Repl. 1	7.65	1.59	8.22	1.31	-6.94	0.28
	Repl. 2	7.60	1.58	8.22	1.31	-7.49	0.30
	Repl. 3	7.47	1.56	8.22	1.31	-9.09	0.37
soil							
	³⁶ Cl	A(³⁶ Cl) , Bq	U _{A(36CI)} , Bq	A(³⁶ Cl) , Bq	U _{A(36CI)} , Bq	Bias , %	En
	Repl. 1	9.39	1.76	9.44	0.94	-0.55	0.03
	Repl. 2	9.59	1.79	9.44	0.94	1.60	0.07
	Repl. 3	9.55	1.79	9.44	0.94	1.20	0.06

Comparison determined vs. reference activities, soil, 3 replicates, bias and E_n , k=2

> Overall good agreement, slight negative bias for iodide

Spiked samples V - concrete

		determine	d activities	reference	activities		
	¹²⁹	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	A(¹²⁹ l) , Bq	U _{A(129I)} , Bq	Bias , %	En
	Repl. 1	7.71	1.96	8.22	1.31	-6.22	0.22
	Repl. 2	7.74	1.97	8.22	1.31	-5.83	0.20
ete	Repl. 3	7.61	1.94	8.22	1.31	-7.36	0.26
concrete							
8	³⁶ Cl	A(³⁶ Cl) <i>,</i> Bq	U _{A(36Cl)} , Bq	A(³⁶ Cl) , Bq	U _{A(36Cl)} , Bq	Bias , %	En
	Repl. 1	9.40	1.56	9.44	0.94	-0.47	0.02
	Repl. 2	9.32	1.54	9.44	0.94	-1.30	0.07
	Repl. 3	9.35	1.55	9.44	0.94	-0.91	0.05

Comparison determined vs. reference activities, soil, 3 replicates, bias and E_n , k=2

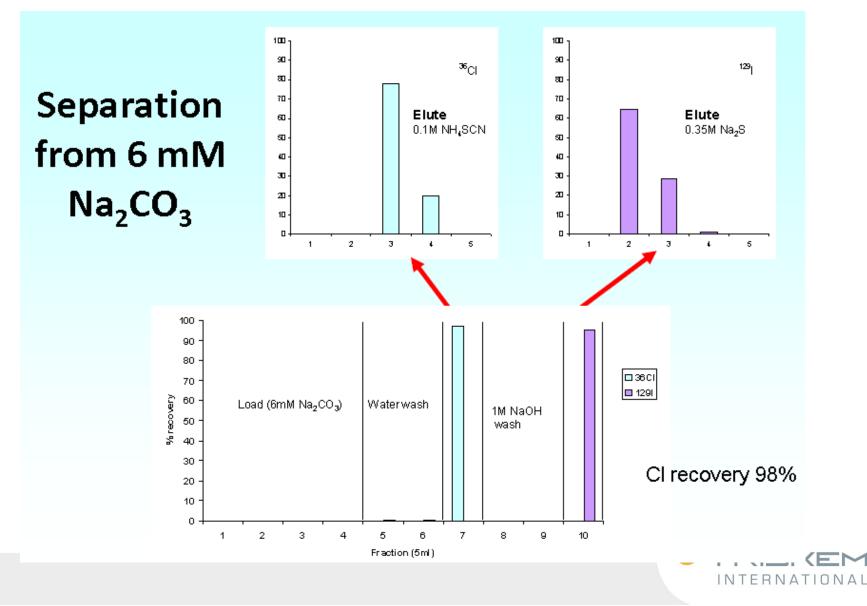
> Overall good agreement, slight negative bias for iodide

Pyrolyser method

- > Allows for analysis of larger samples (several g)
- Thermal decomposition of the samples and desorption of
- CI Species in Pyrolyser furnace at 900°C (ca. 2h)
- System flushed with humidified air; samples also humidified (1ml water)
- Decomposition products trapped in bubbler containing alkaline solution
 - 6 mM Na_2CO_3 used (yield > 80%)
 - Alternative: 1M NaOH (quantitative sorption)

Pyrolyser method

Bubbler connected directly with furnace via glass connector


- Avoid losses due to condensation in tubing
- ≫³⁶CI separated via Ag⁺ loaded CI resin
 - Separation similar to standard method, but bubbler solution loaded directly onto column
 - When loading column directly from 6 mM Na_2CO_3 additional rinsing with 0.1M H_2SO_4 necessary for improved C-14 decontamination (« modified wash »)
- Similar method currently tested for iodide

Pyrolyser method (GAU, 6 mM Na₂CO₃ load)

Pyrolyser method (GAU, 6 mM Na₂CO₃ load)

Pyrolyser method

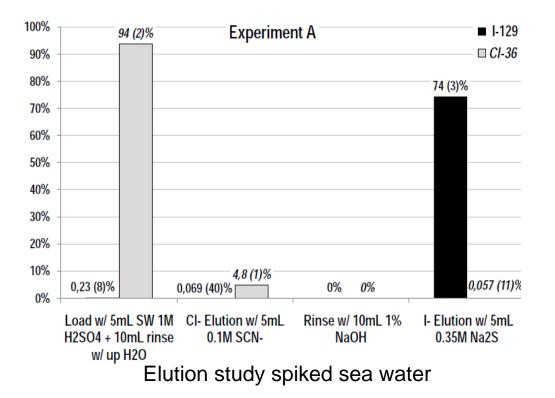
• Decontamination factors D_f:

	³⁶ Cl fraction	¹²⁹ I fraction
³ HTO	> 500	> 2000
¹⁴ CO ₃	7	5000
¹⁴ C modified wash	700	
³⁵ S modified wash	1500	1000
³⁶ Cl		> 2000
129	1300	

≻ High D_f

- Clean CI-36 / I-129 separation
- CI-36 separation yield > 95%

• Analysis of spent resin


Sample type	Expected value	Measured value
lon exchange resin	4.1 kBq	$4.3\pm0.1~\text{kBq}$

Good agreement

I-129 in sea water

> 10 ml sea water spiked with Cl-36, l-129 respectively
 > Separation following standard method

- > No I-129 breakthrough during load and rinse
- ➢ lodide elution needs to be optimized (yields ~75%)

Removal of radio-iodide from radioactive process effluents

- Cooperation with IRE (Belgium)
- Mo-99 production by irradiation of U targets
- Process effluents contain elevated activities of radio-iodine
- Removal of radio-iodine before storage
- Process effluents acidic and oxidizing
 - Radio-iodine presentn several oxidation states and species

Removal of radio-iodide from radioactive process effluents

- Iodine removal via alumina column plus « Mixed Bed » column
- « Mixed Bed » column
 - XAD-4 resin for I_2
 - Ag loaded CL Resin for iodide and remaining iodate
- Optimized Mixture: 4g XAD-4 / 3g CL resin (L grade)
- Flow rates up to 160 mL.min⁻¹
- Radio-iodine retention: 89% 98%
- Retention of up to 2000 GBq per 7g column

Summary

➤CL-resin selective for PG metals (and Hg, Ag and Au)

Method robust against potential interferences

Selectivity for chloride and iodide introduced by loading with Ag⁺

Methods for preconcentration, separation and determination of ³⁶Cl and ¹²⁹I developed

> Applies to chloride and iodide

Reduction with Sn(II) if necessary

Analysis of spiked real samples showed overall good agreement

> aqueous samples, leached and thermally decomposed solid samples

Determination of chemical yield preferable

- Use for iodine removal
- Potential use for iodine concentration

≻e.g. NucMed waste

