Sr resin: Determination of Sr-89 and Sr-90 in environmental and biological samples

- Ø Sr resin
- Ø Yield determination
- Ø Sample preparation
- Ø Separation
- Ø Sample Prep for counting
- Ø Counting
- Ø Mostly based on a publication of the FS-AKU
 - Moderne Routine- und Schnellmethoden zur Bestimmung von Sr-89 und Sr-90 bei der Umweltüberwachung »

Diluent: 1-octanol

- Ø 1.0M 4,4'(5')-di-t-butylcyclohexano 18-crown-6 in 1-octanol.
- Ø 40% (w/w) loaded onto inert chromatographic support.
- Ø Bed density of Sr Resin approximately 0.35 g/mL.
- Ø Sr max. capacity: 21 mg / 2mL resin bed,
- Ø Advised working capacity: max. 8 mg / 2mL resin bed (Opt.: 5 mg)

- Ø Good Sr uptake at high HNO_3 ; easy elution at low HNO_3
- Ø Good selectivity over alkaline and other earth alkaline
- Ø Very good selectivity for Pb (elution problematic, preferably Pb resin)

EICHROM ENVIRONMENT Sr Resin Effect of Matrix Constituents on Strontium Retention Sr Resin 3 M HNO3 103 102 Ca(NO₃)₂ VaNO₃ k's NH₄NO₃ 101 KNO₃ or KC 100 10-2 10-3 10-1 100 101 [Salt], M

- Ø High impact of K/NH₄; elimination necessary when present in high concentration (ion exchange or co-precipitation: e.g. carbonate, phosphate, oxalate)
- Ø Moderate impact of Ca, nevertheless problematic when present in high concentration column size needs to be adapted

Yield determination

- Ø Stable Sr
 - Natural Sr content might need to be determined upfront
 - Adjust introduced Sr mass to column size / capacity

- Gravimetry
- AAS / ICP-AES / ICP-MS (• spectrometry)

Yield determination

- Ø Stable Y when Y-90 is measured after Y-ingrowth and elution
 - Pb-210/Bi-210 !
- Ø Sr-85
 - Half-life 50,5 days
 - Measurement via LSC (3 window method)
 - Calculation
 - Less contribution to background
 - Measurement via γ-spectrometry
 - § Usually several Bq
 - § Contribution to background! (LSC)

Comparison: Background vs Sr-85 FS-08-147-AKU

Abb. 3-3: Ausschnitt des Szintillationsspektrums in Abb. 3-2 mit Sr-85 (ca. 100 Bq) und Untergrund mit gleicher Messzeit.

Madrid - 09/05/2008

	typical sample size	Drying	ashing	leaching	extraction	precipitation
Aerosol		air/oven	depending on used filter, 450° C	6M HCI	1	
drinking water	1-3L	1	/	1	(CEX)	Carbonate
waste water	1 - 10 L	Hotplate	wet ashing (HNO ₃ / H ₂ SO ₄)	1	1	Sulphate / carbonate
	1-3L	1	1	1	extraction with Chelite P	Carbonate
Urine	0,5 - 1 L	1	(400°C/wet ashing)	1	1	Phosphate
vegetation	100 g	Drying oven	450° C	1M HNO ₃	1	1.) CaOxalate (followed by oxalate destruction)
foodstuff	10g ash	Drying oven	450° C (slow increase)	8M HNO3	1	1
Milk	1-5L	(Lyophilisation /) drying oven	< 400° C	6M HCl or 8M HNO ₃	1	Carbonate or Phosphate
	1L	1	/	1	extraction with Chelite P or CEX	Carbonate
soil / sediment	30 - 100 g	Drying oven	< 400° C	6M HCl or 1M HNO ₃	1	1.) CaOxalate (followed by oxalate destruction) 2.) Carbonate

- Ø Aerosol/filters
 - Drying in oven or air
 - Ashing (300°C then 450°C)
 - § depending on filter type and volume
 - § matrix removal / concentration
 - Extraction with 6M HCI
 - Evaporation and redissolution in 8M HNO₃
- Ø Drinking water and « clean » surface water
 - Volume up to 300 L (depending on Ca concentration)
 - Preconcentration by evaporation
 - Precipitation as carbonates
 - Redissolution in 8M HNO₃
 - Also possible: preconcentration via cation exchange
 - Elution with 8M HNO₃

- Ø Waste water (Option 1)
 - Wet ashing with H₂SO₄ and HNO₃
 - § Sr/CaSO₄ precipitates during dilution
 - Sulphates converted to carbonates
 - Carbonates dissolved in 8M HNO₃
- Ø Waste water (Option 2)
 - Extraction of earth alkalines with Chelite P
 - § in batch experiment (2 3 h)
 - Transfer of Chelite P in column, rinsing with deion. water
 - Elution of earth alkalines with 5M HNO₃
 - Volume reduction by evaporation
 - Carbonate precipitation
 - Carbonates dissolved in 8M HNO₃

Ø Urine

- Addition of Ca and conc. HNO₃, boiling for 2 h
- Optional: first drying and mineralization, then precipitation
- Addition of HPO₄²⁻ (and Phenolphtalein)
- Adjust to pH 9 using NH₄OH , precipitation
- Redissolution of Ca-Phosphate precipitate in 8M HNO $_3$ / 0,5M Al(NO $_3$) $_3$
- Ø Vegetation
 - Drying and homogenisation
 - Ashing 500°C
 - Leaching with 1M HNO₃
 - Ca/Sr-Oxalate precipitation at pH 5-6
 - Oxalate destruction (wet ashing or furnace)
 - Dissolution in 8M HNO₃

- Ø Milk (Precipitation)
 - 1 5 L fresh milk, drying and ashing (600° C)
 - Leaching with 8M HNO₃ (or 6M HCI), Filtration
 - Ca-Phosphate precipitation at pH10
 - Redissolution of Ca-Phosphate precipitate in 8M HNO₃
- Ø Milk (Ion exchange)
 - Extraction of earth alkaline with Chelite P or Cation exchange resin
 § in batch experiment (2 3 h)
 - Transfer of Resin in column, rinsing with deion. Water
 - Removal of milk and milk fat, might need to be done at elev. temp.
 - Elution of earth alkaline with 5M HNO₃ (Chelite P) or NaCl solution (CEX)
 - Volume reduction by evaporation
 - Carbonate precipitation, followed by dissolution in 8M HNO₃

- Ø Soil/Sediment/Sludge (Option 1)
 - 100 g dry sample
 - drying and ashing (400° C)
 - Leaching with 6M HCl, ΔT
 - Dilution
 - Filtration to remove precipitated sicilic acid
 - Ca-Oxalate precipitation at pH 5.5
 - Oxalate destruction at 400°C, then 700°C
 - Redissolution in HNO₃/HCI
 - Carbonate precipitation
 - Redissolution in 8M HNO₃

- Ø Soil/Sediment/Sludge (Option 2)
 - 30 g dry sample
 - drying and ashing (400° C)
 - Leaching with 1M HNO₃, ΔT
 - Dilution
 - Ca-Oxalate precipitation at pH5.5 in presence of Na-Citrate
 - Oxalate destruction by wet ashing (conc HNO_3 , H_2O_2)
 - Redissolution in 3M HNO₃

Separation

- Ø Loading solution in general in 8M HNO_3 or 3M HNO_3
 - Depending on matrix and phosphate concentration also 0,5M in $AI(NO_3)_3$
- Ø Volume of the loading solution depending on
 - Column size
 - Sr content
 - Matrix (Ca content)
- Ø Column sizes generally used:
 - 2 mL prepacked (0,65g resin) e.g. water samples, urine samples
 - 5 mL prepacked (1,6g resin) e.g. waste water, some food stuff
 - 8 mL prepacked (2,6 g resin) e.g. milk, soil
 - Up to 10 15 mL (3 5 g resin) all matrices
 - own packing from bulk Sr resin
 - MPLC setups

MPLC

Abb. 2-4: Ansicht der 3-Säulen-MPLC-Anlage im Isotopenlabor der BfG

Abb. 2-2: Elutionskurve zur Charakterisierung der MPLC-Anlage

- Ø Automatized separation
- Ø Good characterization of system necessary (e.g. elution volumina)

Separation – example 2 mL column

- Ø 10 20 mL loading solution
- Ø Sr content: 5 mg (« working capacity »)
- Ø 10 mL rince with 8M HNO_3 (eliminates matrix, Ba, Y, K)
- Ø In case of presence of Pu(IV), Np(IV) or Ce(IV) rince with 10 mL 3M HNO₃ / 0,05M oxalic acid
- Ø 5 mL rince with 8M HNO_3 (eliminates traces of Ba and K)
- Ø Sr elution with 10 mL H_2O or 0.05M HNO_3

Separation – example 2 mL column Option Y-90 elution

- Ø In case a determination via Y-90 is prefered (e.g. via Cerenkov counting)
- Ø Possibility: no Sr-90 elution, let stand column and allow for Y-90 ingrowth, elute Y
- Ø Problem: need to be sure of absence of Pb-210
 - ingrowth of Bi-210 (high energy beta emitter: $E_{\beta,max} = 1,2$ meV)
 - Co-eluted with Y-90
- Ø Better: elute Sr-90 and allow for Y-90 ingrowth, then reload onto fresh Sr column
- Ø Additional advantages:
 - Sr-89 determination in Sr eluate via Cerenkov counting
 - Y yield determination via stable Y

Separation – example 10 mL column

- Ø 50 100 mL loading solution
- Ø Sr content 20 mg (« working capacity »)
- Ø 50 80 mL rince with 8M HNO_3 (eliminates matrix, Ba, Y, K)
- Ø In case of presence of Pu(IV), Np(IV) or Ce(IV) rince with 40 50 mL 3M HNO₃ / 0,05M oxalic acid
- Ø 20 mL rince with 8M HNO_3 (eliminates traces of Ba and K)
- Ø Sr elution with 100 mL H_2O or 0.05M HNO_3
- Ø Evaporation or Sr-Carbonate precipitation

Sample preparation for counting

- Ø LSC counting 10 mL elution volume (2 mL column)
 - Sr-85 tracer: direct measurement γ and/or LSC
 - Stable Sr via spectrometry: aliquot for yield, rest LSC (choice of cocktail!)
 - Stable Sr via gravimetry: carbonate precipitation, weighing, redissoloution in aqueous 12,5% touluensulphonic acid (1 -2 mL) and scintillation cocktail (18 19 mL)
 Iow quench!, LSC
- Ø LSC counting Larger elution volumes (5 15 mL columns)
 - Preconcentration by Sr-Carbonate precipitation
 - Yield via spectrometry: redissolution in acid, aliquotage for spectro/LSC
 - Yield via gravimetry: weighing, redissoloution in aqueous 12,5% touluensulphonic acid (1 -2 mL) and scintillation cocktail (18 – 19 mL), LSC
 - Yield via Sr-85 tracer: γ counting of filter or LSC sample (redissoloution in aqueous 12,5% touluensulphonic acid (1 -2 mL) and scintillation cocktail (18 19 mL))

Sample preparation for counting

- Ø Cerenkov counting
 - Direct measurement of sample
 - Yield:
 - § Via Sr-85: γ-spec of sample or by LSC after addition of scintillation cocktail
 - § Via spectrometry : aliquotage
 - § Y-90 measurement: 100% yield of elution assumed or Y via spectrometry
- Ø GPC counting
 - In general gravimetry
 - Evaporation of Sr eluate
 - Sr oxalate or carbonate precipitation
 - Y oxalate or hydroxide precipitation / in general conversion to oxide
 - Optional for yield determination: redissolution of source and spectrometry

- Ø LSC no presence of Sr-89
 - Use of Sr-85 as yield tracer 3 window method
 - 1st window Sr-85, 2nd window Sr-90, 3rd window Y-90 (plus control for Sr-89)
 - Yield and Sr-90 in one measurement
 - Allows result control by repeated measurements (Y-90 ingrowth)
 - Low Sr-85 activity, low contribution to Sr-90 background
 - Use of Sr-85 as yield tracer yield via g-spectrometry
 - Elevated Sr-85 activity necessary
 - Considerable background contribution
 - One or two window method
 - High energy windows diminuation of Sr-85 contribution to background

- Ø LSC no presence of Sr-89
 - Use of stable Sr as yield tracer 2 window method
 - 1st window Sr-90, 2nd window Y-90 (plus control for Sr-89)
 - Yield and Sr-90 in two different measurements
 - Allows result control by repeated measurements
 - No contribution of Sr-85 to background
- Ø Remark on LSC counting with multiple windows methods
 - Calibration!
 - Quench needs to be stable
 - Maths...

Example 3 window method – Sr-85 tracer Eikenberg, Vetter presentation UGM Bratislava Window A: Sr-85 Window B: Sr-89/90 and Y-90 Window C: Sr-89 and Y-90

Madrid - 09/05/2008

- Ø LSC presence of Sr-89
 - Use of Sr-85 as yield tracer 3 window method
 - 1st window Sr-85, 2nd window Sr-90, 3rd window Sr-89 (and Y-90)
 - Yield and Sr-89 and Sr-90 in one measurement
 - Control via repeated measurements
 - Measurement should be performed rapidly after elution
 - Low Sr-85 activity, low contribution to Sr-89/90 background
- Ø LSC presence of Sr-89
 - Use of Sr-85 as yield tracer yield via γ -spectrometry
 - Elevated Sr-85 activity necessary, Considerable background contribution
 - Two or three window method
 - 2 windows: Sr-90 and Sr-89 (plus Y-90)
 - 3 windows: Sr-90, Sr-89 and Y-90
 - High energy windows diminuation of Sr-85 contribution to background

Counting

- Ø LSC presence of Sr-89
 - Use of stable Sr as yield tracer
 - Two or three window method
 - 2 windows: Sr-90 and Sr-90
 - 3 windows: Sr-90, Sr-89 and Y-90
 - Yield and Sr-90 in two different measurements
 - Allows result control by repeated measurements
 - No contribution of Sr-85 to background

Example 3 window method – no Sr-85 Window A: Sr-89/90 and Y-90 Window B: Sr-89 and Y-90 Window C: Y-90

Abb. 3-1: Szintillationsspektren der Einzelnuklide Sr-89, Sr-90, Y-90 sowie der Nuklidmischung Sr-90 und Y-90 im radioaktiven Gleichgewicht.

Madrid - 09/05/2008

Ø Cerenkov counting

Example of Sr-89 Cerenkov spectrum

- Ø Nuclides with $E_{\beta,max} > 500 \text{ meV}$ (Sr-89 and Y-90)
- Ø Light emission at approx. 400 nm
- Ø Measurement with LS counter
- Ø Direct measurement of eluate
- Ø No scintillation cocktail needed, no mixed rad.waste
- Ø Very little interference from Sr-90 $\epsilon << 3\%$

Abb. 3-4: Čerenkov-Spektrum von Sr-89

Abb. 5-4. Cerenkov-Spekirum von 5

Madrid - 09/05/2008

Counting

- Ø GP counting
 - No spectrum, no energy window setting
 - No discrimination of radionuclides
 - Sr-90 direct, better via Y-90 ingrowth
 - § multiple measurements
 - § Y-90 measurement
 - Calculation of Sr-89 activity possible
 - Uncertainties
 - Very good calibration needed
 - Advantage: many samples at the same time (screening)
 - Improved DL when Y-90 in/near equilibrium

Typical detection efficiencies

Counting	Nuclide	type of sample	typical detection efficiency
	Y-90	liquid	0,80
Cerenkov	Sr-89	liquid	0,28
	Sr-90	liquid	< 0,003
	Y-90	$Y_2(C_2O_4)_3$	0,54
GPC	Sr-89	SrCO ₃	0,51
	Sr-90	SrCO ₃	0,41
	Y-90	liquid	0,99
100*	Sr-89	liquid	0,99
LSC	Sr-90	liquid	0,97
	Sr-85	liquid	0,3 - 0,7 +

* mean of three different TriCarb LSC counter, 2mL toluenesulphonic acid / 18 mL UGLLT, integral 0 - 1200 keV, normal count mode

⁺ strongly depending on counter used

Nuclide	detection efficiency window A / % (0 - 12 keV)	detection efficiency window B / % (12 - 300 keV)	detection efficiency window C / % (300 - 1200 keV)
Y-90	0,3	33,4	66,5
Sr-89	2,0	51,2	47,0
Sr-90	6,7	90,2	0,0
Sr-85	61,7	7,7	0,0

Example TriCarb2550, 2mL toluenesulphonic acid / 18 mL UGLLT, normal count mode

Nuclide	detection efficiency window A / % (0 - 12 keV)	detection efficiency window B / % (12 - 300 keV)	detection efficiency window C / % (300 - 1200 keV)
Y-90	0,5	35,4	61,6
Sr-89	2,0	53,1	42,8
Sr-90	6,8	89,9	0,0
Sr-85	27,8	2,6	0,0

Example TriCarb2770, 2mL toluenesulphonic acid / 18 mL UGLLT, normal count mode

Typical yields and detection limits

	mass / volume of sample	typically obtained yield in %	approx. detection limit for Sr-89	approx. detection limit for Sr-90
Aerosol	52000 m ³	80 - 90	1,6 µBq/m³	0,64 µBq/m³
drinking water	1-2L	80 - 100	0,1 Bg/L	0,01 Bg/L
drinking water	120 L	80 - 90		0,1 mBq/L
waste water	0,5 L	80 - 90	0,4 Bg/L	0,04 Bq/L
Urine	0,5L	70 - 90		0,04 Bq/L
vegetation	0,8 kg	60 - 80	0,1 Bq/kg FM	0,025 Bq/kg FM
foodstuff	0,8 kg	60 - 80	0,1 Bq/kg FM	0,025 Bq/kg FM
Milk	1 L	50 - 90		0,007 Bq/L
soil / sludge	5 - 30 g	50 - 80		0,1 Bq/kg

.

Summary

- Ø Characteristics Sr resin
- Ø Importance of preliminary matrix elimination
- Ø Matrix, Sr content and column size
- Ø Yields in general between 60 and 100 %
- Ø Different types of counting with different advantages
- Ø No mentioning of other applications
 - Pb-210/Po-210 determination
 - Ba/Ra separation
 - Radiopharmacy
- Ø No mentioning of MS methods
 - Sr isotope ratios
 - Dating of soil samples and silicates, oil industry, origin of cheeses