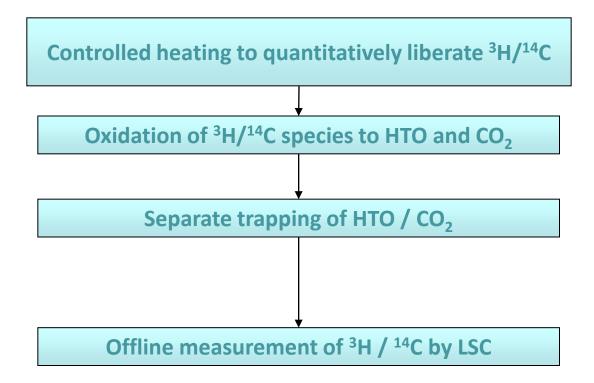
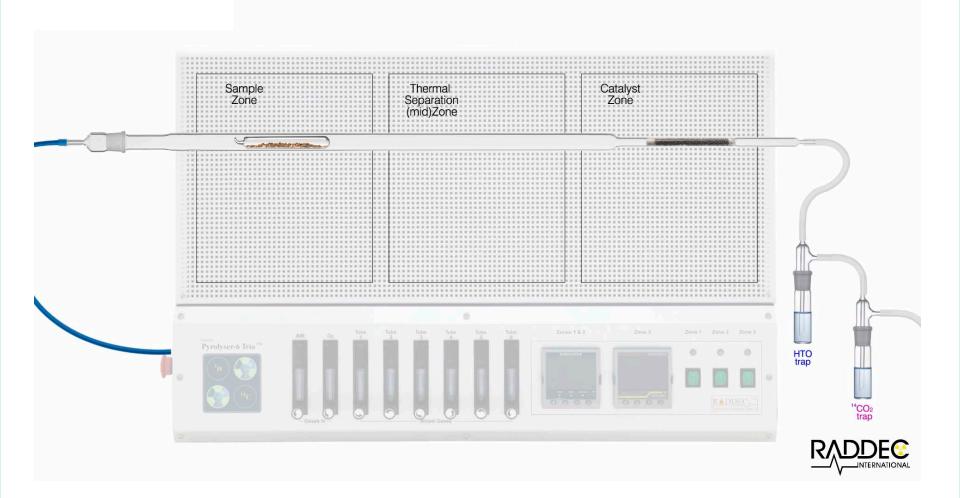
Effective extraction of ³H & ¹⁴C using the Raddec Pyrolyser

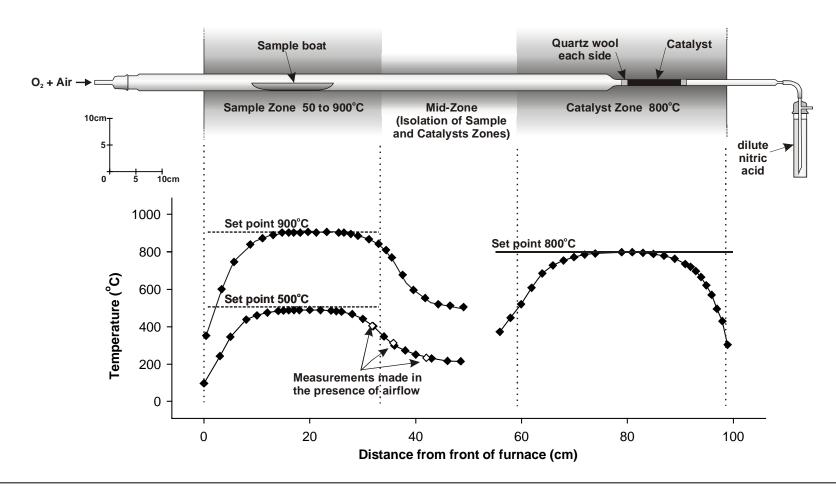

The PYROLYSER series

- Easy to use system designed by scientists / analysts.
- Simultaneous decomposition of up to 6 samples.
- Efficient oxidation of the liberated ³H and ¹⁴C species (and ³⁶Cl and ¹²⁹I).
- The furnace design has been thoroughly tested and proven over many years. The system has been in use commercially since 2003.
- Continued R&D programme ensures that the system and procedures are based on the latest research and best available technologies.

Principle of ³H/¹⁴C extraction

The Pyrolyser system


Purpose-built tube furnace for ³H/¹⁴C analysis


Also available as Pyrolyser 2 and 4 variants

Configuration of the system

Furnace temperature profiles

Sample boats

Silica boats

Aluminium boats (< 600°C)

Bubblers

22ml borosilicate glass bubblers

Features

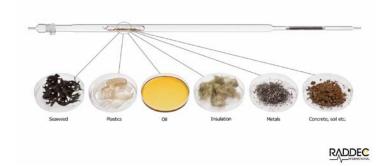
- 6 samples decomposed simultaneously within a single furnace system in ~2-4 hours (depending on sample type) using a programmable thermal ramp.
- The multi-tube, small footprint design, permits high sample throughput without occupying significant laboratory space (unlike with multiple singletube furnaces).
- 10g Pt-alumina catalyst per tube lasting 20+ determinations.
- Sample zone can operate up to 900°C permitting efficient ³H extraction from concrete and graphite

Features

- Rapid cool-down of sample zone enabling good cycle times between runs.
- Incorporation of a mid-zone furnace to prevent condensate problems whilst maintaining thermal separation of the sample and catalyst zones.
- Bubbler-traps (20mls) have >95% efficiency.
- The Pyrolysers have been in regular use for extraction of ³H and ¹⁴C from a wide range of materials (vegetation, fish, soil, sediment, concrete, metal etc).
- The design and proven effectiveness follows several years of testing of samples from intercomparison exercises, environmental studies and nuclear site decommissioning programmes.

Recent developments

- Over-temperature protection on all furnaces
- Fan cooling of electronics compartment
- Automated Gas Control to activate air and oxygen flows (AGS system)
- Improved furnace control and data logging functionality using Eurotherm 3504 & Nanodac controllers
- Glassware development for ³⁶Cl & ¹²⁹I extraction


Sample types routinely run

Environmental samples

- Soil/Sediment, Fruit, Water, Grass, Milk, Fish, Sludge etc.

Decommissioning samples

- Concrete, Brick, Asbestos, MMMF, Metal, Plastic, Desiccants, Paper, Electrical wire, Sewage sludge, Graphite, Paint, Oil etc.

Sample sizes

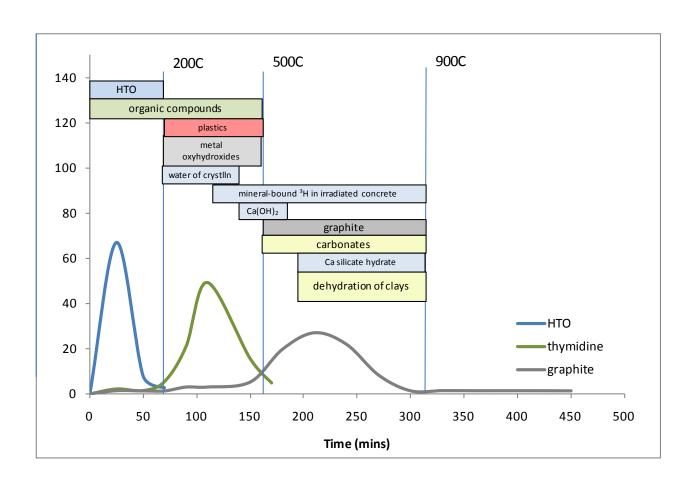
Samples with low organic contents

Soil/Sediment, concrete, brick, metal etc. (1 - 30g)

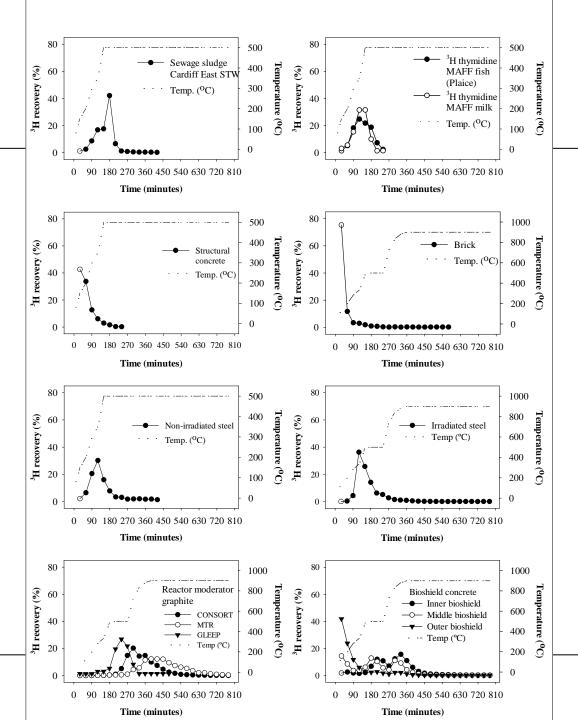
Samples with high organic contents

Biota, plastics, organic rich sediment/soil etc. (Normally 0.5 - 1g if ¹⁴C is being determined).

Samples up to 5g can be run if only tritium is being measured.



Catalyst performance


Catalyst zone temp.	No catalyst	Quartz glass fragment	Alumina pellet only	CuO granules (oxidant)	Re-used Pt-Al ₂ O ₃ at 800°C	New Pt-Al ₂ O ₃
200						
300						
400						
500						
800						

³H desorption profiles

Thermal Evolution profiles

Counting efficiency and furnace recovery for ³H/¹⁴C

	SQPE*	Counting efficiency	Furnace recovery**	Limit of detection***
³H	719 - 729	18 – 20 %	> 90 %	0.020 Bq/g
¹⁴ C	720 - 750	66 – 73 %	> 95 %	0.015 Bq/g

^{*} Typical SQPE of concrete samples

^{**} Average of 70 measurements using an organic ³H/¹⁴C standard

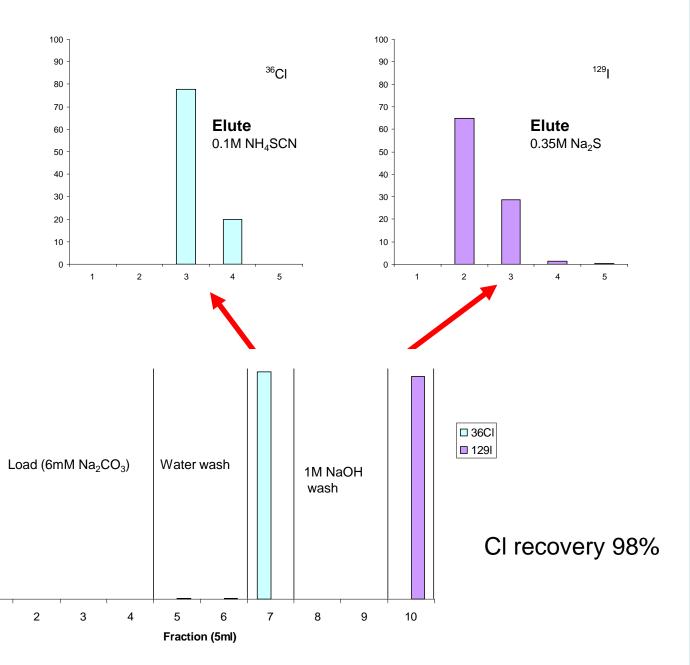
^{***} Using 5g sample size and 2 hour counting time on Quantulus™

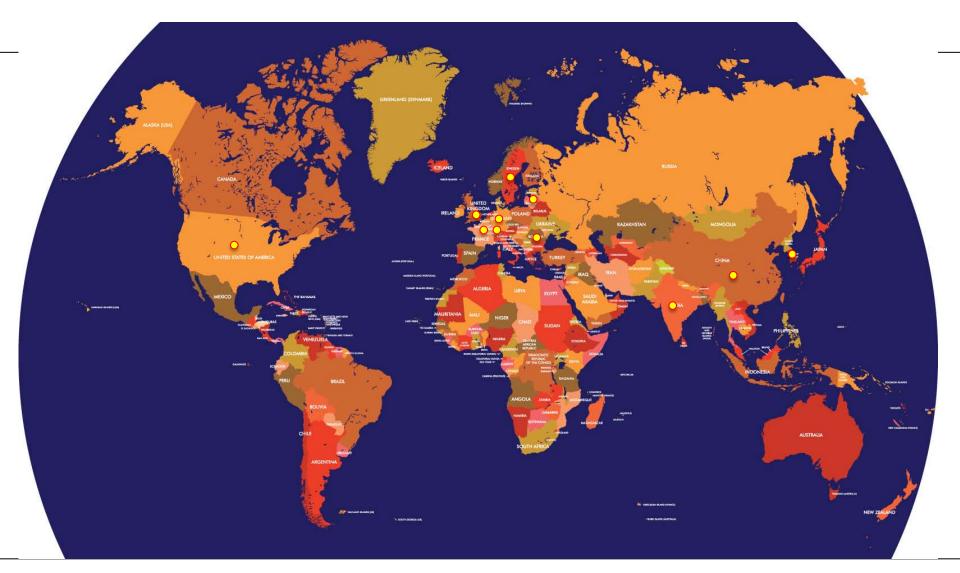
Intercomparison results for ³H

Sample	Sample H-3/C-14 type		Reference value	
		Bq/g $\pm 1\sigma$	Bq/g ± 1σ	
NPL (2002)	Tritiated water	20 ± 10	20.04 ± 0.18	
NPL (2004) Tritiated wa		0.54 ± 0.04	0.539 ± 0.006	
NPL (2009)	Tritiated water	1.69 ± 0.28	1.688 ± 0.024	
		1.35 ± 0.22	1.389 ± 0.030	
FSA	H-3 thymidine	4.72 ± 0.66	Mean = 4.04	
(Milk)			0.18 – 4.93	
FSA	H-3 thymidine	4.42 ± 0.30	Mean = 4.67	
	(Plaice)		2.7 – 8.3	

Intercomparison results for ¹⁴C

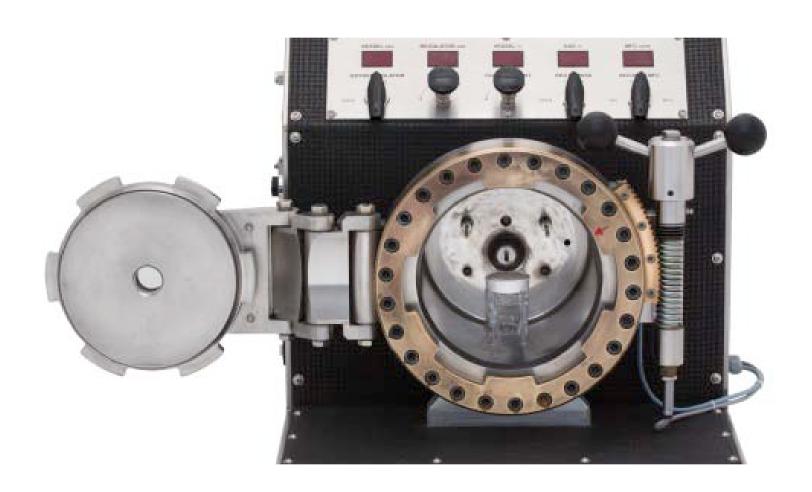
Sample	Composition	Measured value Bq/g ± 1σ	Reference value Bq/g ± 1σ
NPL (2004)	C-14 carbonate in solution	23 ± 2	24.4 ± 0.5
NPL (2004)	C-14 carbonate in solution	0.9 ± 0.1	0.905 ± 0.006
IAEA C2	Carbonate	< 0.02	0.0112
IAEA C6	Sucrose	0.13 ±0.01	0.143
IAEA C7	Oxalic acids	0.02 ± 0.01	0.021


³⁶CI / ¹²⁹I analysis set

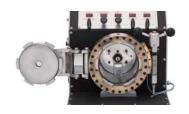


Separation using Cl resin

% recovery



Pyrolysers worldwide

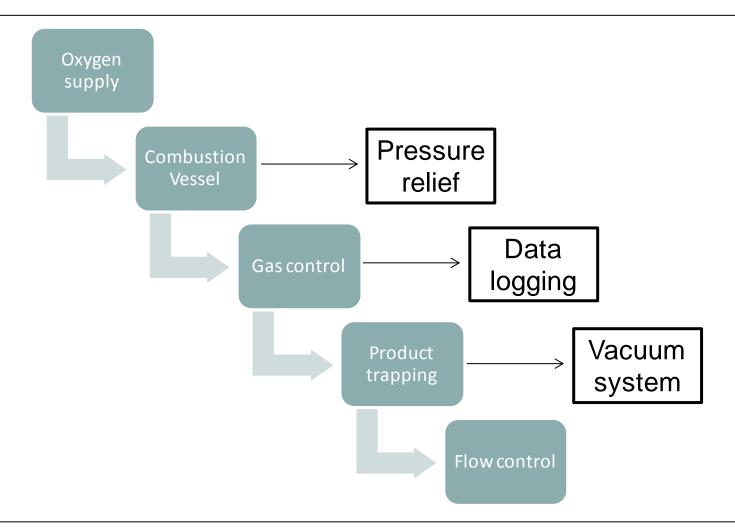


The new HBO system

Advantages of HBO

- A high capacity sample oxidiser (RADDEC Ltd)
- Quantitative combustion in an excess oxygen environment
- Operates at pressures ≤100 bar
- Large samples (≤30 g) can be combusted
- Wide range of sample matrices maybe combusted:

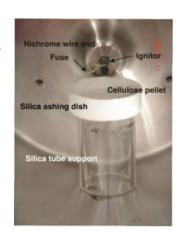
Cellulose (e.g. vegetation)


Environmental samples (biota / veg.)

Vacuum pump oil

Nitrile rubber (e.g. lab waste)

Instrument schematic

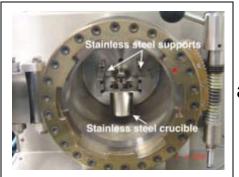


Combustion Procedure

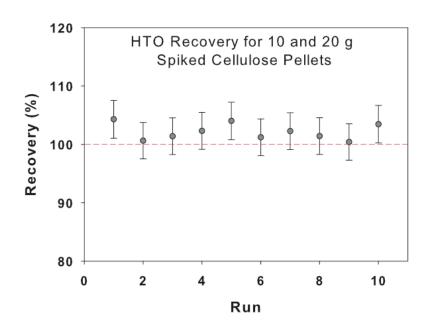
Sample pelletised or cut to size

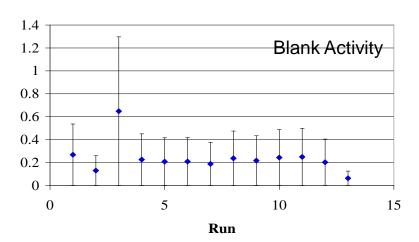
Sample loaded into disposable silica crucible

Chamber filled with either 10, 20 or 30 bar pure O₂


Sample combusted

Measurement by LSC


HTO / H₂O trapped from exhaust gas



Instrument Evaluation

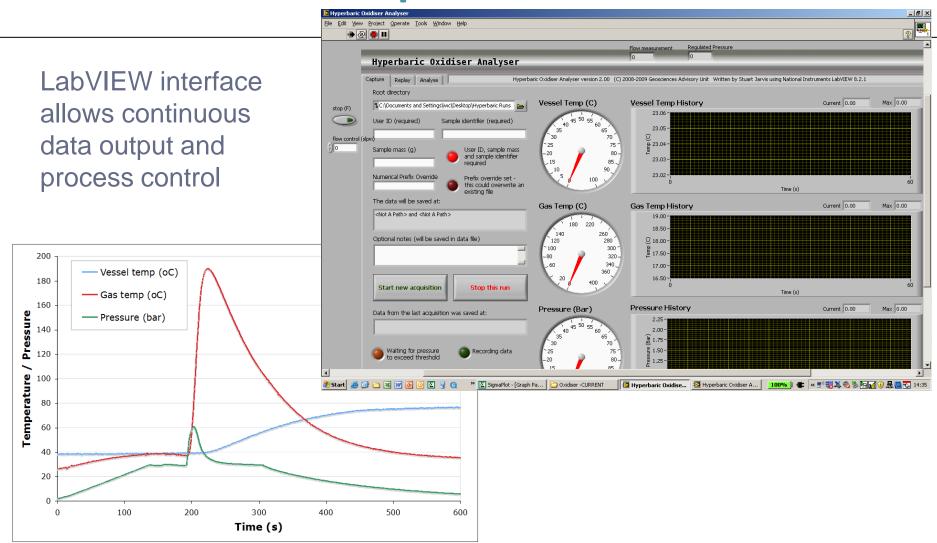
HTO activity recovery:

- Ability to recover HTO activity from within the HBO assessed
- Cellulose pellets spiked with HTO (~100 Bq)
- Recovered activity compared to spike activity
- Very small memory effect ≤0.7%

HBO₂ Mk2 developments

High volume pressure relief valve

Improved pressure vessel with resistance wire ignition


Digital flow control and pressure regulation

Lightweight yet robust SS frame and lifting system

Real time data output

Software development

LSC+

Liquid scintillation data processing

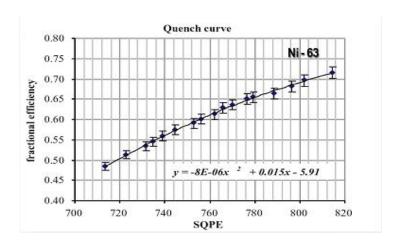
Raddec LIMS

Laboratory information management system

Itrax plot

Data visualisation software for XRF core loggers

LSC+ Data processing software


Results for the H-3 in water (8ml + 12ml Gold StarTM)

Report date: 7-Nov-2003 Customer: Raddec Ltd Job reference: Raddec 372 Date samples received: 6-Nov-2003 Date of analysis: 7-Nov-2003 Working instruction number: - Raddec/RC/2022 Calibration report number: - Raddec/CAL/16

	Counter S/N	Laboratory S/N	Reference date	H-3 Bq/ml	2 s.d.
1	INST STD		7-Nov-2003	23.224	2,548
2	6-169-1	372-1	7-Nov-2003	< 0.006	
3	6-169-2	372-2	7-Nov-2003	< 0.007	
4	6-169-3	372-3	7-Nov-2003	< 0.006	
5	6-169-4 STD		7-Nov-2003	0.115	0.014

All results are in Bq/ml and are decay corrected to the reference date (12.30 Years half life)
"< values" are limits of detection as defined by Currie, 1968
Uncertainties are at the 2 s.d. confidence level and are based on propagated method uncertainties

Analyst: A Other

- Calculates activities directly from counter files
- Eliminates transcription errors
- Calculates LODs (Currie)
- Quality Control Built-in
- Statistical analysis of results
- Full diagnostic report
- Range of input file formats for all LSC counters

For more information

Raddec Ltd. &

Raddec International Ltd.

Suite 63
151 High Street
Southampton
SO14 2BT
United Kingdom

Tel: (+44) 07739 898344

Fax: (+44) 02380 231667

Email: sales@raddec.com

www.raddec.com

Triskem Ltd

Parc de Lormandière - Bât. C Rue Maryse Bastié Campus de Ker Lann 35170 Bruz France

Tel: + 33.2.99.05.00.09

Fax: . + 33.2.99.05.07.27

Email: info@triskem.fr

