

Extraction chromatography in determination of radionuclides in environment, waste and radiopharmaceutics

Xiaolin Hou

Center for Nuclear Technologies, Technical University of Denmark

Importan radionuclides in environment and waste

- Important natural radionuclides in environment ³H, ⁷Be, ¹⁰Be, ¹⁴C, ²⁶AI, ³⁶CI, ⁴¹Ca, ¹²⁹I, ^{228, 226}Ra, ²¹⁰Po, ²¹⁰Po, Isotopes of U and Th
- Important artifical radionuclides in environment
 ³H, ¹⁴C, ⁹⁰Sr, ¹³⁷Cs, ¹³⁴Cs, ⁹⁹Tc, ¹²⁹I, ^{238,239,240,241}Pu, ²³⁷Np, ²⁴¹Am, etc.
- Important radionuclides in nuclear waste
 ³H, ¹⁴C, ⁹⁰Sr, ¹³⁷Cs, ¹³⁴Cs,, ⁹⁹Tc, ¹²⁹I, ^{238,239,240,241}Pu, ²³⁷Np, ²⁴¹Am, ²⁴²Cm, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni, ⁶⁰Co, ¹³³Ba, ¹³⁵Cs ¹⁵²Eu, ⁷⁹Se, ⁹³Zr, ⁹³Mo, ⁹⁴Nb, etc.

DTU Nutech Center for Nuclear Technologies

Major Radionuclides in the environment and

waste

 γ- radionuclides
 ⁶⁰Co, ¹³³Ba, ¹³⁷Cs, ¹³⁴Cs, ¹⁰⁶Ru, ^{152,154, 155} Eu, ⁵⁸Co, ⁵⁴Mn, ⁵⁹Fe, ^{110m}Ag, ⁹⁴Nb.

Difficult-to-measure radionuclides

- β- Emitter
 - ³H, ¹⁴C, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ^{63, 59}Ni, ⁹³Zr, ⁹³Mo, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, ²⁴¹Pu.
- α- emitter (actinides)
 - ²³⁸⁻²⁴⁰Pu, ²⁴¹Am, ^{243,244}Cm, ²³⁷Np

Application of radionuclides

Process of decommissioning nuclear facilities

Production of medical radioisotopes

- Preparation of irradiation targets
- Irradiation: production of radioisotope by nuclear reaction
- Separation of radioisotope:
 - Remove from the matrix
 - Remove the impurities
 - Recovery of the enrich isotope
- Quality control of the radioisotope product
 - Radionuclidic purity
 - Radiochemcial purity

Methods for chemcial separation of radionuclides

- > Precipitation-co-precipitation (90 Sr 63 Ni 41 Ca 226 Ra 36 Cl 90 Pu 1 U 1 Np)
- Selective adsorption (¹³⁷Cs、²¹⁰Po)
- > Combustion/heating $(^{131}I_{,})^{129}I_{,}^{103}Ru_{,}^{99}Tc)$
- > Solvent extraction (U, Pu, Np, Am, ^{99}Tc , $^{131,129}I$)
- > Ion exchange chromatography (Pu $\$ Np $\$ Am $\$ ¹²⁹I, ⁹⁹Tc, ⁶⁴Cu, ¹⁰Be)
- **Extraction chromatography** (^{63}Ni , ^{55}Fe , ^{99}Tc , Pu, Np, U, Am,
 - ⁹⁰Sr、²¹⁰Pb、¹⁰Be、 etc.)

Application of extraction chromatograhy in determination of radionuclides

- Environmental radioactivity and tracer studies
 - \checkmark Determination of U, Pu, Np and Am isotopes in

environmental samples

- ✓ Determination of 99 Tc in environmental samples.
- Characteristation of decommissioning waste
 - ✓ Determination ⁶³Ni and ⁵⁹Ni in decommissioning waste
- Application in radioisotope production
 - ✓ Quality control of ⁹⁹Mo-^{99m}Tc generator
 - ✓⁶⁷Ga produced by cyclotron

Determination of U, Pu, Np and Am isotopes in environmental samples

Qiao, Hou, Roos & Miro, Anal. Chem, 2009; 2011; 2015 Anal Chim Acta, 2010 Talanta, 2011 JAAS 2011 J. Environ. Radioact. 2010, 2012 Environ. Sci. Technol. 2016

Preconcentration of U, Pu, Np, Am

Formation of complex of Pu, Np, U and Am in HNO₃ and HCl media

Ion	HCl <6M	HCl >6M	HNO ₃ <7 M	HNO ₃ >7 M
Pu ³⁺	PuCl ^{2+,}	PuCl ^{2+,} PuCl ₂ ⁺	Pu(NO ₃) ^{2+,}	Pu(NO ₃) ^{2+,}
	PuCl ₂ ⁺		Pu $(NO_3)_2^+$	Pu $(NO_3)_2^+$
Pu ⁴⁺	PuClx ^{y+}	PuCl ₆ ²⁻	Pu (NO ₃) _x ^{y+}	Pu $(NO_3)_6^{2-}$
PuO ₂ ²⁺	PuO ₂ Cl ₃ ⁻ , PuO ₂ Cl ₂ ²⁻	PuO ₂ Cl ₃ ⁻ , PuO ₂ Cl ₂ ²⁻	No complex	PuO ₂ (NO ₃) ₂
UO ₂ ²⁺	No anion complex	UO ₂ Cl ₄ ²⁻	No anion complex	No anion complex
Th ⁴⁺	No anion compex	No anion complex	No anion complex	$\mathbf{Th}(\mathbf{NO}_3)_6^{2-1}$
Am ³⁺	No anion complex	No anion complex	No anion complex	No anion complex
Po ²⁺		PoCl ₆ ²⁻		$Po(NO_3)_6^{2-}$
Np ⁴⁺	No	NpCl ₆ ²⁻	No	Np(NO ₃) ₆ ²⁻
NpO ₂ ⁺	No	No	No	NpO ₂ (NO ₃) ₆ -

Separation of Am from Pu, Th and U by anion exchange

Separation of U, Pu, Np, Am based on extraction chromatography

HNO₃ medium

Fig. 1. Nitric acid dependencies of k' for selected elements with the TEVA, TRU, and U/TEVA extraction chromatographic resins $(T = 23-25^{\circ} \text{ C}; 50-100 \ \mu\text{m} \text{ particle size resins}).$

E. P. Horwitz, et.al., Anal. Chim. Acta, 1995, 310, 63-7

Separation of U, Pu, Np, Am based on extraction chromatography

HCI medium

Fig. 2. Hydrochloric acid dependencies of k' for selected elements with the TEVA, TRU, and U/TEVA extraction chromatographic resins $(T = 23-25^{\circ} \text{ C}; 50-100 \ \mu\text{m} \text{ particle size resins}).$

E. P. Horwitz, et.al., Anal. Chim. Acta, 1995, 310, 63-7

Separation of U, Pu, Np, Am based on extraction chromatography

0

Separation of Pu

based on anoin exchange chromatography

Separation of Pu based on extraction chromatography

DTU Nutech Center for Nuclear Technologies

Determination of ²³⁴U ²³⁵U, ²³⁶U and ²³⁸U

in sea water samples

DTU Nutech Center for Nuclear Technologies

Sepup for automated separation using sequential injection approach

ws

ΈF9

9

Separation of Np and Np using TEVA column and automated separation system

Analytical Results of some SRM and samples

Sample	Recovery [†] ,	²³⁹ Pu	²⁴⁰ Pu	²³⁷ Np	Ехр	ected concentration,	Bq/kg
name	%	measured † ,	measured [†] ,	measured [†] ,	²³⁹ Pu	²⁴⁰ Pu	²³⁷ Np
		Bq/kg	Bq/kg	Bq/kg			
IAEA-135	59.7 \pm 6.9	125.7 \pm 5.4	93.6 \pm 2.6	0.78 \pm 0.04	123.0 \pm 3.8 [0.87] $^{ m t}$	93.8 \pm 2.3 [0.13]	0.846 \pm 0.045 [2.86]
sediment							
Irish Sea	64.7 ± 15.9	223.7 \pm 7.3	191.3 \pm 5.9	1.02 \pm 0.04	237.0 ± 5.0[3.16]	181.0 \pm 4.9	0.987 \pm 0.048 [1.43]
sediment						[3.02]	
NIST-4359	56.4 \pm 2.0	$\textbf{0.079} \pm \textbf{0.003}$	$\textbf{0.052} \pm \textbf{0.005}$	0.000134 \pm	0.084 \pm 0.003	0.057 (0.049-	0.000173 (0.000152-
Seaweed				0.000020	[1.73]	0.066) [1.73]	0.000198) [3.38]
Danish soil*	88.1 \pm 3.4	0.14 ± 0.01	0.09 \pm 0.02	$\textbf{0.05} \pm \textbf{0.01}$	0.140 \pm 0.008	0.098 \pm 0.006	0.05 \pm 0.01 [0.00]
					[0.69]	[0.69]	
Thule soil ^{&}	70.0 \pm 9.5	1.45 \pm 0.07	0.37 \pm 0.07	1.14 \pm 0.16	-		-
Danish	77.8 ± 11.4	0.40 ± 0.02	$\textbf{0.01} \pm \textbf{0.01}$	0.08 ± 0.01	-	-	-
seaweed [#]							

[†]All values are the average of three replicates (\pm standard deviation). [‡]Numbers in brackets are $|t|_{exp}$ -values, at 95% confidence interval, the critical t-value (t_{crit}) is 4.30 for n=3. ^{*}0.05 \pm 0.03 mBq of ²³⁷Np was always spiked into each 10 g of Danish soil. [&] 1.02 \pm 0.12 mBq of ²³⁷Np was spiked into each 1 g of Thule soil. [#] 8.13 \pm 0.10 mBq of ²³⁹Pu and 1.67 \pm 0.03 mBq of ²³⁷Np were spiked into each 20 g of Danish seaweed.

Qiao & Hou, Anal. Chem, 2009; and 2011.

DTU Nutech Center for Nuclear Technologies

Determination of ⁹⁹Tc in environmental samples

Shi, Hou, Roos & Wu Anal Chem., 2012, Anal. Chim Acta, 2012 Water Research 2012

⁹⁹Tc

- \succ Long half-life (2.1 \times 10⁵ y)
- High mobility (TcO₄⁻)
- High fission yield (about 6 %)
- Tc is a volatile element, and easily to be loss at high temperature.
- > A pure beta emitter
- Measured by GM counter, LSC, and ICP-MS.
- It has to be separated from other radionuclides before measurement by beta counting
- Completely Removal of Ru (⁹⁹Ru) and Mo (¹H⁹⁸Mo) for ICP-MS.

Chemical separation of technetium

- Adjust Tc to TcO₄⁻ by K₂S₂O₈
- Separate Tc from transition metals, transuranics, Po etc by hydroxides, because TcO₄⁻ can not be precipitate at high pH.
- TcO₄⁻ can be tightly absorbed by anion exchange column,washing with NaOH and HNO₃ can remove most of interferring nuclides.
- Not satisfactory for removal Ru, and Mo

Horwitz, et al. (HP195)

Behaviors of TcO₄⁻, Mo and Ru on TEVA resin

1) Batch experiment; 2) m (resin)/V(solution)=0.01g/mL; 3) Contacted time (3h)

- TEVA resins express a good sorption ability for TcO₄⁻: (K_d > 1000, [HNO₃]< 1mol/L);
- 2) One small TEVA column is not enough to remove Mo;
- 3) Ru is insensitive with the change of [HNO₃] when it sorbed on the TEVA resin.

Removal of Mo from TEVA column

Conditions: 1) Loading (0.1M HNO₃ medium) 2) Wanshing (40 mL, 1M HNO₃) 3) Eluting (10 mL, 8M HNO₃)

Effect of H₂O₂ for adsorption of Ru on TEAV column

		Pre-treatmen	t with H_2O_2	No H_2O_2
	Volume (mL)	1M NaOH	H ₂ O ²	$0.1 M HNO_3$
			Ru (ppb)	
	4	0.131	0.102	0.07
Sampla	8	0.197	0.150	0.091
loading	12	0.197	0.159	0.089
	16	0.196	0.154	0.092
	20	0.195	0.154	0.089
	4	0.067	0.054	0.045
	8	< 0.001	0.004	0.003
Washing	12	< 0.001	0.004	0.002
	16	< 0.001	0.005	0.002
	20	< 0.001	0.005	0.003
Removal (%))	98	79	49

* Washing with 0.1 M HNO₃

Separation procedure for determination of ⁹⁹Tc in soild samples

Behaviors of Tc, Mo and Tc on two sequential TEVA columns

Separation of ⁹⁹Tc using an automated system with sequential injection approach

Validation of the method

Samula	Size	Recovary	Concentration of ⁹⁹ Tc	Reference value
Sample	(g)	(%)	(mBq/g)	(mBq/g)
Danish seaweed	10	85 ~ 95	73 ± 2	70 ~ 75*
IAEA 446 seaweed	5	70 ~ 75	14 ± 2	$16 \pm 2^{*}$
NIST 4359 seaweed	5	65 ~ 70	23 ± 2	17 ~ 48

* The value was obtained by a radiomatric method in Risø National Lab, Denmark

seawater chemical		⁹⁹ Tc measured	reference	decontamir	amination factors	
sample	yield (%)	(mBq/L)		Мо	Ru	
(L)			(mBq/L)			
50	68 ~ 75	$\textbf{0.270} \pm \textbf{0.018}$	_	(5.6 \pm 0.8) $ imes$ 10 ⁵	(1.4 \pm 0.6) $ imes$ 10 ⁶	
200	60 ~ 70	$\textbf{0.265} \pm \textbf{0.021}$	0.267 ± 0.016 $^{\text{b}}$	(7.0 \pm 1.2) $ imes$ 10 ⁵	(7.7 \pm 1.5) $ imes$ 10 ⁶	

^a Results are given as the average and 2 SD of three replicates. ^b Values were obtained using the method reported by Chen et al., 2001).

DTU Nutech Center for Nuclear Technologies

Determination of ⁶³Ni, ⁵⁹Ni in decommissioning waste

Hou, et al. Anal. Chim. Acta, 2005

Production of ⁶³Ni and ⁵⁹Ni in nuclear reactor

•⁶³Ni:

 $>^{62}$ Ni(n, γ)⁶³Ni (σ=14.5 b; η_{62Ni}=3.63%) >⁶³Cu(n, p)⁶³Ni, (η_{63Cu}=69.17%)

⁵⁹Ni: ≻⁵⁸Ni(n, γ)⁵⁹Ni (σ=4.6 b; η_{58Ni}=68.1%)

Atomic ratio: ⁵⁹Ni/⁶³Ni=6.5:1 Activity ratio: ⁵⁹Ni/⁶³Ni=1:133 **DTU Nutech** Center for Nuclear Technologies

Radioactive decay of ⁶³Ni 和 ⁵⁹Ni

⁵⁹Ni X-Rays:
6.915 keV (10.4%)
6.930 keV (20.4%)
7.65 keV (3.70%)

Measurement methods for ⁶³Ni, ⁵⁹Ni

- Due to their low energy of beta particle and measurable electrons, LSC is the most suitable method for their measurement.
- Due to their pure beta and EC decay, they have to be
- Analytical procedure:
 - Decomposition of sample
 - Separation of Ni from matrix elements and all other radionuclides
 - Preparation of a suitable solution for LSC measurement of ⁶³Ni
 - Electroplate Ni on disk for X-ray spectrometry measurement, or prepared as Ni metal for AMS measurement of ⁵⁹Ni.

Mearement methods

⁶³Ni: gass flow counting(anti-coincidence, <10-50%)
 Ion implanted silicon detector (1-6%)
 LSC (60-80%)
 ⁵⁹Ni: X-Ray spectrometry (<1%)
 Accelerator mass spectrometry

Interferences for measurement of ⁶³Ni, ⁵⁹Ni

Nuclide	Half-life	Decay	Nuclide	Half-life	Decay
⁶⁰ Co	5.27 y	β-,γ	³ H	12.33 y	β-
⁵⁸ Co	70.86 d	β+, γ	$^{14}\mathrm{C}$	5730 y	β-
¹⁵² Eu	13.54 y	ε, β⁻,γ	¹³³ Ba	10.51 y	3
¹⁵⁴ Eu	8.59 y	β-,γ	⁴¹ Ca	1.03E5 y	3
⁵¹ Cr	27.7 d	ε,γ	³⁶ Cl	3.01E5 y	β ^{-,} ε
⁶⁵ Zn	244.3 d	ε, β+, γ	¹³⁷ Cs	30.7 y	β-
⁵⁴ Mn	312.3 d	ε, β+, γ	¹³⁴ Cs	2.06 y	β-,ε
¹⁵¹ Sm	90 y	β-	⁹⁰ Y	64 h	β-
⁹⁰ Sr	28.79 y	β-			

Conventional metods for separation of Ni

- Precipitation as Ni(OH)₂, separation from Sr, Cs, ³H, ¹⁴C, Ba, Ca, Cl.
- Precipition by ammonium, separate Ni from Fe, Mn, Eu, Pb, Al, Cr.
 - Low recovery of Ni in this method (Ni can be also partly precipitate in ammonium solution)
 - Cannot separate Cu, Co, etc.
- Ion exchange to separate Ni from Co, Cu, Zn, Fe, and transuranics.
- Precipitation or extraction of complex of Ni with dimethylglyoxime (DMG).
- Co and Cu can also form a complex with DMG and extracted
- Evaporation of Ni(CO)₆

Separation of Ni by hydroxides precipitation

Element	Precipitati	Solution, %	
	NaOH (pH9)	NH ₄ OH	NH ₄ OH
Ni ²⁺	>99.8	>20	< 80
Co ²⁺	>99.5	<20	< 80
Ba ²⁺	<30.5	<30.0	>70
Eu ³⁺	>99.8	>99.8	<0.2
Cs^+	<0.2	< 0.2	>99.8
Sr ²⁺	<37.5	<35.0	>60

- Most of matrix in concrete and environmental samples, such as
 C, S, Ca, Si, Na will be separated.
- The recovery of Ni is not satisfied using ammonium to separate Ni from other matals by hydroxides precipitation

 Other metals such as Mn, Cr,
 V, Al, Pb, and transuranics will also be precipitated by NaOH,
 and cannot be separated from Ni. **DTU Nutech** Center for Nuclear Technologies

Behaviors of Ni and other metals on anion exchange column

Many metals can form a anion complex with Cl⁻ in HCl solution (MCl_x⁻), so can adsorbed on anion exchange column

Fig. 2.—Separation of transition elements Mn to Zn (Dowex-1 column; 26 cm. \times 0.29 cm.; flowrate =0.5 cm./ min.).

Separation of Ni, Co, Eu, Ba by anion exchange chromatography

Separation of Eu, Ba, Co by anion exchange chromatography, Bio-Rad AG1x4, 1x15 cm, 0-40ml:9M HCl, 40-70ml:4M HCl, 70-90ml, 0.05M HCl

Separation of Ni by anion exchange chromatography

Element	Content, %
Fe ³⁺	< 0.001
Ni ²⁺	>99.5
Co ²⁺	<0.01
Ba ²⁺	<7.5
Eu ³⁺	>99.8
Cs ⁺	>99.5
Sr^{2+}	>99.5

- Ni can be completely separated from Fe, Co, Cu, Zn, U, Pu, etc.
- Ni cannot be efficiently separated from Cr, Eu, Sm, Mn, V, Sc, Ti, Zr, Ba, Th, Am. Of them, the radioisotopes of Eu, Sm, Ba, Zr, Mn, Cr and matrix elements of Cr, Mn V in metal and alloy seriously interfer the determination of Ni-63.

Thus: a further purification for both Ni and Fe is needed.

Application of Ni-DMG complex for the separation of Ni

- Ni can form a stable specific complex with dimethylglyoxime. By Ni-DMG precipitation or organic solvent extraction of Ni-DMG complex at low concentration, Ni can be separated from many other elements.
- While, some other metals, such as Co, Cu can also form a complex with DMG and interferring the separation of Ni.

Behaviors of Ni、Co、Cu、Fe on Ni resin column

2mg Ni ²⁺

2mg Ni²⁺ + 2mg Co²⁺

2mg Ni²⁺ + 2mg Cu²⁺

2mg Ni²⁺ + 8mg Fe³⁺

Separation and purification of Ni with Ni resin

The Nickel Resin contains the DMG inside the pores of a polymethacrylate resin. The nickel-DMG precipitate occurs on the resin, where it is held and readily separated from other elements in the supernatant.

1. Loading of solution

2. Washing with 0.2 M ammonium citrate to remove other elements

3. Eluting Ni using HNO3 4. Evaporte eluted Ni-DMG solution to 0.1-0.2 ml for LSC

Performance of Ni resin in the separation of Ni

Element	Recovery or decontamination factor
Ni ²⁺	> 98.5%
Fe ³⁺	104
Co ²⁺	103
Ba ²⁺	104
Eu ³⁺	104
Cs ⁺	104
Sr^{2+}	104

Ni specific extraction chromatography has a higher decontamination to most of elements, such as Fe, Co, Cu, Cr. Mn, Ba, Eu, transuranics, etc.

•A higher recovery of Ni can be obtained in the procedure.

DTU Nutech

院地球环

Performance on the separation of Fe and Ni

Interference	Recovery/decontamination factor		Interference	Recovery/decontamination factor	
	Fe fraction	Ni fraction		Fe fraction	Ni fraction
⁵⁵ Fe	85-95%	>10 ⁵	¹³³ Ba	>106	>10 ⁵
⁶³ Ni	>10 ⁵	80-95%	^{134,137} Cs	>106	>106
^{58,60} Co	>10 ⁵	>10 ⁵	^{89,90} Sr	>106	>106
^{152,154} Eu	>106	>10 ⁵	^{41,45} Ca	>106	>106
¹⁵¹ Sm	>106	>10 ⁵	³⁶ Cl	>106	>106
⁵⁴ Mn	>10 ⁵	>106	³ H	>106	>106
⁵¹ Cr	>106	>10 ⁵	¹⁴ C	>106	>106

For all interferring radionuclides, the decontamination factors higher than 10⁵.

LSC spectra of ⁶³Ni in samples of decommissioning waste

DTU Nutech

Center for Nuclear Technologies

Sampling of concrete and graphite from danish reactor, DR-2

Analytical results of ⁶³Ni and ⁵⁵Fe in concrete core and graphite from Danish research reactor DR-2

⁵⁵Fe and ⁶³Ni in graphite of DR-2

Sample	⁵⁵ Fe		⁶³ Ni	
No	Recovery,%	Bq/g	Recovery,%	Bq/g
DR-3-T	92.2	545000	94.63	5552
ly7.5	90.4	0.53	93.89	92.5
ly5.5	90.6	1.05	93.74	22.3
Yi7.5	92.5	1.92	93.35	7.71
Yi5.5	91.3	9.21	91.56	43.1

Quality control of ⁹⁹Mo-^{99m}Tc generator

Hou, DTU-Nutech-R, 2012

⁹⁹Mo production

□ Fission of ²³⁵U: ²³⁵U(n, f)⁹⁹Mo

- ➤ 6.2% fission yield,
- high specific activity (no carrier)
- \checkmark Need separation from uranium and other fission products.
- ✓ Main Impurities: fission products + activation products including actinides.

Neutron activation of ⁹⁸Mo: ⁹⁸Mo(n, γ)⁹⁹Mo (Risø-Generator for analysis of environmental ⁹⁹Tc)

Easy production, directly irradiat Mo oxides, and then dissolve irradiated Mo oxide and load it to gernerator column.

✓ Main impurities: activation products

Items for quality control of ⁹⁹Mo-^{99m}Tc generator

* Chemical Purity:

All other elements besides technetium, the most concern is the metals which effect the application of 99mTcO4-, for example Al.

* Radiochemcial Purity:

>Definition: For a material, the fraction of the stated isotope present in the stated chemcial form.

> The percentage of $^{99m}TcO_4$ - in all ^{99m}Tc , mainly $^{99m}Tc^{4+/99m}TcO_4$ -

Radionuclidic Purity:

- Definition: The proportion of the total activity that is present as a specific radionuclide.
- Other radionculides in the eluate of ^{99m}Tc

Radionuclidic purity of ^{99m}Tc eluate from ⁹⁹Mo-^{99m}Tc generator

Possible radionuclidic impurities:

- fission products for fission ⁹⁹Mo generator)

Isotope	t ^{1/2}	γ Energies (keV)	β_{max} Energy (MeV)
⁹⁹ Mo	65.9 h	140.5 (4.5%)	1.350
		739.5 (12.2%)	
⁹⁹ Tc	211 100 vr		0.294
		<u> </u>	0.437
^{131}I	8.02 days	364.4 (81.7%)	0.971
^{132}I	2.95 days	522.6 (16.0%)	3.577
¹⁰⁶ Ru	373.59 days		0.039
⁹⁰ Sr	28.74 yr		0.546
⁹⁰ Y	64.1 h		2.282
⁸⁹ Sr	50.53 days		1.495
¹⁰³ Ru	39.26 days	497.1 (91%)	0.763

Radionuclidic purity of ^{99m}Tc eluate from ⁹⁹Mo-^{99m}Tc generator

Possible impurities in activation produced ⁹⁹Mo: — productions products including actinides

Nuclides	Half-life	Decay model	Energy	Gamma Energy
⁶⁰ Co	5.27 y	beta	318 keV	1173 keV, 1332 keV
⁸⁶ Rb	18.6 d	beta	1774 keV	1076.6 keV
¹²⁴ Sb	60.2 d	beta	1301 keV	602 keV, 1691keV
¹³⁴ Cs	2.06 y	beta	658 keV	604.7 keV, 795.8 keV
²³⁵ U	703 Ma	alpha	4397 keV	185.7 keV
²³⁸ U	4468 Ma	alpha	4198 keV	
²³⁹ Np	2.35 d	beta	436 keV	106.1 keV
²³⁹ Pu	24110 y	alpha	5156 keV	

Limitation of radionuclic impurities required in 99mTc eluate from a ⁹⁹Mo-^{99m}Tc generator in European pharmacopoeia 7.0

The radioactivity due to radionuclides other than technetium-99m,

≻ molybdenum-99:	0.1 %
≻ iodine-131:	$5 imes 10^{-3}$ %
≻ ruthenium-103:	5 imes 10 ⁻³ %
≻ strontium-89:	6 imes 10 ⁻⁵ %
≻ strontium-90:	6 imes 10 ⁻⁶ %
alpha-emitting impurities:	1 $ imes$ 10 ⁻⁷ %

> other gamma-emitting impurities: 0.01 %

Analytical methods for determination of impurities in ^{99m}Tc eluate

• Gamma spectrometry:

⁹⁹Mo, ¹³¹I, ¹⁰³Ru and other possible gamma emitters (removal of ^{99m}Tc by 15 days decay)

• Gross alpha by LSC

> ⁹⁹Mo, ⁹⁹Tc needs to be removed

- Measurement of ⁸⁹Sr和⁹⁰Sr using LSC by Cerenkov counting
 - Separation of Sr from all other possible impurities

Generation of ^{99m}Tc from the Decay of ⁹⁹Mo

- For 20 h waiting time, the theory activity ratio of ⁹⁹Tc/^{99m}Tc = 10⁻⁸ in ^{99m}Tc eluate.
- For a 99m Tc eluate of 20 GBq, 99 Tc = 200 Bq.
- A higher ⁹⁹Tc was observed in the eluate (fresh eluate with short ingrowth time)

⁹⁹Mo and ¹⁰³Ru in ^{99m}Tc eluate from ⁹⁹Mo-^{99m}Tc Generator of GE Healthcare (4 GBq)

Figures 4 and 5

Figures 2 & 3

Procedure for determination of radionuclidic impurities in ^{99m}Tc eluate

Detection limit to the impurities

Item	Anal. method	Volume of eluate, mL	Detection limit, Bq *	Limitation by Eu Ph. ** Bq
⁹⁹ Mo	γ-spec.	2.0	<250	2×10 ⁶
¹³¹ I	y-spec.	2.0	<20	1×10 ⁵
¹⁰³ Ru	γ-spec.	2.0	<6.5	1×10 ⁵
Other gamma #	γ-spec.	2.0	<5	1×10 ⁶
⁸⁹ Sr	LSC	1.0	<0.20	600
⁹⁰ Sr	LSC	1.0	<0.15	60
Total beta #	LSC	1.0	< 0.40	5×10 ⁵
Total alpha	LSC	1.0	< 0.01	1.0

* Considering a decay time of 15 days from the eluting.

DTU Nutech

Center for Nuclear Technologies

