

Recent developments in the analysis of actinides, Sr-90 and Ra-226 from difficult matrices

Sherrod L. Maxwell, PhD

Triskem User's Group Meeting 2018 September 21, 2018 Rose et al. note that if an Improvised Nuclear Device (IND) detonation occurs, laboratory sample analysis needs to occur in the first 6-24 hours

Rose C, Seater R, and Norige A, Analysis of decision making skills for large scale disaster response, 2015 IEEE Global Humanitarian Technology Conference (GHTC), 8-11 Oct. 2015, Seattle Washington, USA

- Are we ready?
- Solid matrices offer significant challenges
 - analytical methods employed must be able to overcome these difficulties
- Plus...we will likely have and overwhelming number of samples to process....

- If an IND detonates, there will be large amounts of:
 - remaining nuclear material
 - activation products and
 - fission products deposited from the blast, including actinides, ⁸⁹Sr and ⁹⁰Sr
- If a Radiological Dispersive Device (RDD) explosion occurs some of the more common radionuclides that can be expected are alpha emitters such as ²³⁴U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Cm, ²⁴⁴Cm and ²²⁶Ra and beta/gamma emitters such as ⁵⁷Co, ⁶⁰Co, ¹³⁷Cs, ¹²⁹I, ⁹⁰Sr and ²²⁸Ra
 - Radiological Laboratory Sample Analysis Guide for Incident Response Radionuclides in Soil, EPA 402-R-12-006, September 2012

- Actinides and strontium-89,90 at environmental levels require significant sample preparation/purification
 - Cannot simply put sample in gamma spectrometer
 - Ex. Cs-137, Co-60
- Urban matrices require sample digestion/destructive analysis
 - Potential refractory particles
 - Need to be fast and very robust

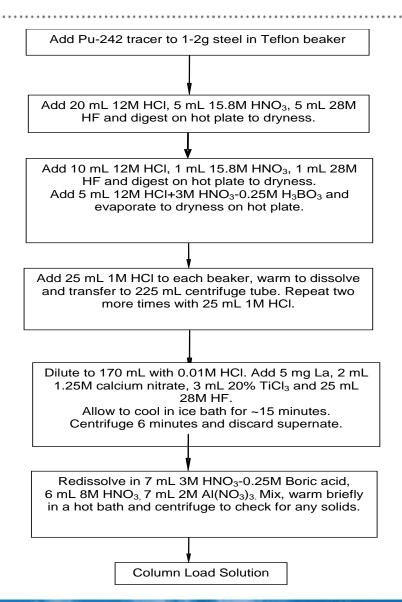
Urban matrices

- Published concrete, brick, asphalt methods that US EPA is utilizing
- Continued development of assays for limestone, marble, granite, steel, concrete matrices, published in 2016-2018
- Published
 - Pu isotopes in steel
 - Actinides in granite
 - Sr-89/90 in steel
 - Ra-226 in steel

Focus today on new work

- Ra-226 in fish and beef (Cation exchange resin + DGA Resin + alpha spectrometry)
- Sr-90 in cheese-DGA Resin (Y-90 with no waiting, gas proportional counting or LSC)
- Po-210 in urban matrices (alkaline fusion + DGA Resin + alpha spectrometry)

J Radioanal Nucl Chem (2017) 314:1103–1111 DOI 10.1007/s10967-017-5501-x


Rapid method to determine plutonium isotopes in steel samples

Sherrod L. Maxwell¹ · Brian Culligan¹ · Jay B. Hutchison¹ · Ralf Sudowe² · Daniel R. McAlister³

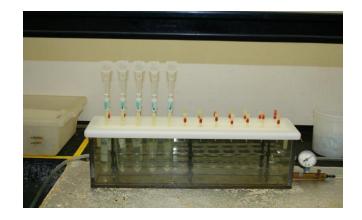
Steel- challenges

- high iron content, also chromium, nickel, etc
- Can't fuse directly
- Explored rapid digestion with aqua regia with or without HF
 - HF adds ruggedness if refractory particles are present
- Single precipitation of plutonium with LaF₃/CaF₂
 - remove much of the Fe from the steel digestion
 - Fe can interfere with some resin separations

Sample Dissolution for Pu Isotopes in Steel

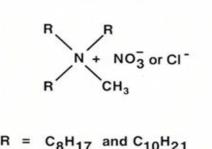
Also tested acid dissolution + fusion option

Rapid Sample Preparation for Plutonium in Steel Samples


Use Aqua Regia +HF

LaF₃/CaF₂ precipitation

Pu Isotopes on TEVA Resin



¹⁰ Plutonium Purification for Counting

- Rapid Column Separations
 - Pu on TEVA Resin
 - Anion exchange extractant Aliquat 336
 - Valence adjustment to Pu(IV)
 - Tests with refractory Pu-239/240 show very low recovery without HF
 - Tested by adding MAPEP 24 soil (refractory Pu)
 - Tested acid digestion plus fusion option for steel

Could also use

TEVA+TRU (Pu and U) TEVA+DGA (Pu+Am/Cm)

Stainless Steel Samples Spiked with Refractory Pu-239 (with HF)

Sample	²⁴² Pu Yield	Tracer Peak	239 Pu Spiked Value	²³⁹ Pu Measured Value	Difference
D	(%)	(FWHM)	(mBq/sample)	(mBq/sample)	(%)
1	103.1	34.2	24.5	23.16	-5.5
2	98.0	38.6	24.5	23.16	-5.5
3	104.2	48.0	24.5	23.50	-4.1
4	87.7	33.1	24.5	25.12	2.5
5	95.8	37.6	24.5	22.57	-7.9
6	104.8	52.9	24.5	22.64	-7.6
Avg. Spiked Smps	98.9			23.36	-4.7
SD	6.6			0.93	3.8
% RSD	6.6			4.0	
		~2g steel	16 hour count		

Stainless Steel Samples Spiked with Refractory Pu-239 (no HF)

Sample	²⁴² Pu Yield	Tracer Peak	²³⁹ Pu Spiked Value	²³⁹ Pu Measured Value	Difference
ID	(%)	(FWHM)	(mBq/sample)	(mBq/sample)	(%)
1	93.5	58.6	24.5	0.92	-96.2
2	96.6	63.5	24.5	1.23	-95.0
3	80.0	43.5	24.5	1.56	-93.6
4	87.4	66.2	24.5	0.67	-97.3
Avg. Spiked Smps	89.4			1.094	-95.5
SD	7.3			0.384	1.6
% RSD	8.2				
		~2g steel	16 hour count		

Rapid, rigorous, defensible methods

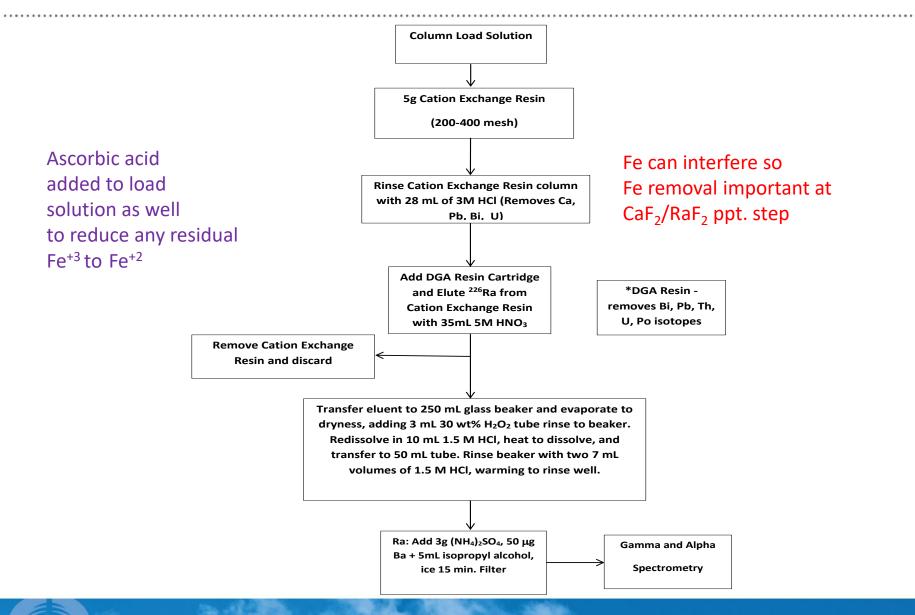
- Ra-226 in fish and beef samples (Cation exchange resin + DGA Resin)
- Sr-90 in foods such as cheese (Y-90 with no waiting for ingrowth)
- Po-210 in urban matrices (alkaline fusion + DGA Resin)
 - Novel collection
 - Rugged separation
 - Microprecipitation

- Ra-226 (T_{1/2} = 1600 y) one of the most toxic of the long-lived alpha-emitters present in the environment
- Ingestion or inhalation of ²²⁶Ra can lead to a significant committed dose to individuals due to its long half-life and tendency to concentrate in bones
- Ra-226 has been identified by the IAEA as a radionuclide that can harm human health if used in a terrorist attack using a RDD

- Ra-226 has a high specific activity relative to Uranium and many other naturally occurring radionuclides
 - Ra-226 RDD greater potential dose than Uranium RDD
- The IAEA AMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network administered proficiency testing for the rapid analysis of Ra-226 in water and phosphogypsum in 2008
 - Most labs used gamma spectrometry, <u>waiting 21 days for ingrowth</u> of progeny to measure ²¹⁴Pb/²¹⁴Bi
 - 30-40% of the lab results were unacceptable vs IAEA requirements
- Continuing need for fast reliable results for ²²⁶Ra in urban matrices

One more look at steel before we move to foods...

J Radioanal Nucl Chem (2017) 314:1417–1423 DOI 10.1007/s10967-017-5491-8

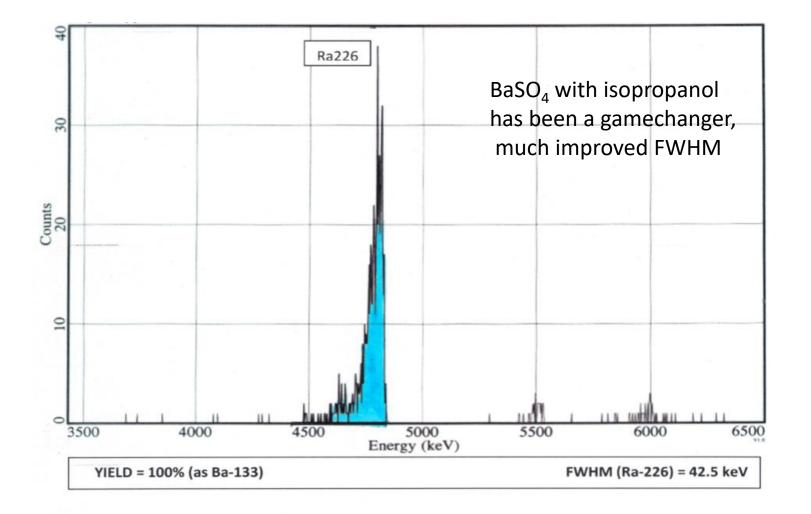


Rapid method to determine ²²⁶Ra in steel samples

Sherrod L. Maxwell¹ · Brian Culligan¹ · Jay B. Hutchison¹ · Ralf Sudowe² · Daniel R. McAlister³

Similar preconcentration to Pu/Sr as fluoride however lower acid needed to effectively ppt RaF₂

¹⁷ Rapid Extraction Method for Ra-226 in Steel


¹⁸ Results for Ra-226 Spiked in Steel Samples

Sample	¹³³ Ba Yield	²²⁶ Ra Reference Value	²²⁶ Ra Measured Value	Difference
ID	(%)	(mBq smp ⁻¹)	(mBq smp ⁻¹)	(%)
1	100.0	36.84	35.62	-3.3
2	101.6	36.84	37.67	2.2
3	94.6	36.84	36.23	-1.7
4	86.5	36.84	37.05	0.6
5	94.3	36.84	36.18	-1.8
Avg	95.4		36.5	-0.79
SD	5.9		0.81	
% RSD	6.2		2.2	

¹⁹ Results for Ra-226 Spiked in Steel Samples

Sample	¹³³ Ba Yield	226Ra Reference Value	226Ra Measured Value	Difference
ID	(%)	(mBq smp ⁻¹)	(mBq smp⁻¹)	(%)
1	101.1	184.2	189.46	2.9
2	89.2	184.2	176.61	-4.1
3	67.6	184.2	184.37	0.1
4	96.2	184.2	182.98	-0.7
5	93.1	184.2	181.26	-1.6
Avg	89.5		182.9	-0.68
SD	13.0		4.7	
% RSD	14.5		2.6	

²⁰ Ra-226 Spiked in Steel Samples- Alpha Spectra

- Exposure to high levels of internal contamination by ²²⁶Ra can lead to severe, acute or chronic health effects.
- Currently no US FDA derived intervention limit (DIL) in place for ²²⁶Ra in food,
 - so decisions about ²²⁶Ra would likely be made via a risk analysis after an event occurs
- For this work it was assumed that intervention levels would be about 10 Bq/kg or 0.27 pCi/g

Approach

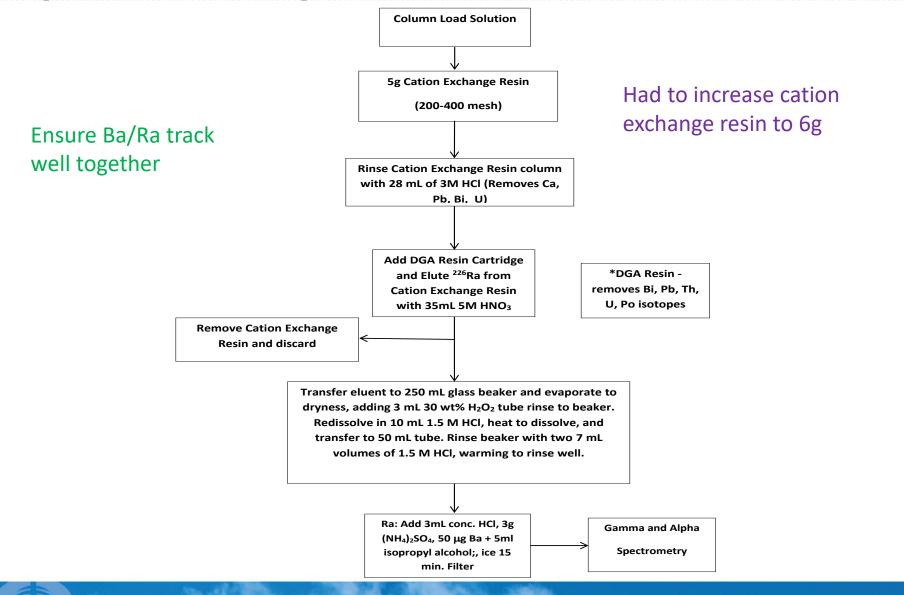
- 50-100 gram sample aliquot
- "Reverse" aqua regia digestion, then multiple nitric acid additions and evaporation, then hydrogen peroxide (alternate with HNO₃), furnace overnight, final wet-ash
- Load to Cation Resin in dilute HCI (removes Ca, etc.)
- Add DGA Resin to purify Ra-226 during elution from cation exchange resin (from alpha emitters)
- Count Ra-226 by alpha spectrometry, Ba-133 yield via gamma spectrometry

Sample Preparation Ra-226 in Fish/Beef

Place 50-100 g sample in glass beaker

Add ¹³³Ba as Tracer

Digest with 'reverse aqua regia' (0.5 mL per gram) on hot plate, evaporate, wet-ash with HNO₃ only several times, alternate wet-ashing with HNO₃ and H₂O₂ several times, and furnace heat at 550C overnight (or less)

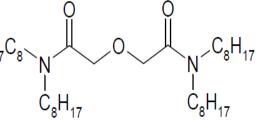


Add 15 mL 1.5M HCl, 10 ml 1.5M HCl to dissolve solids, warm and add to tube, Mix well, centrifuge, discard any solids

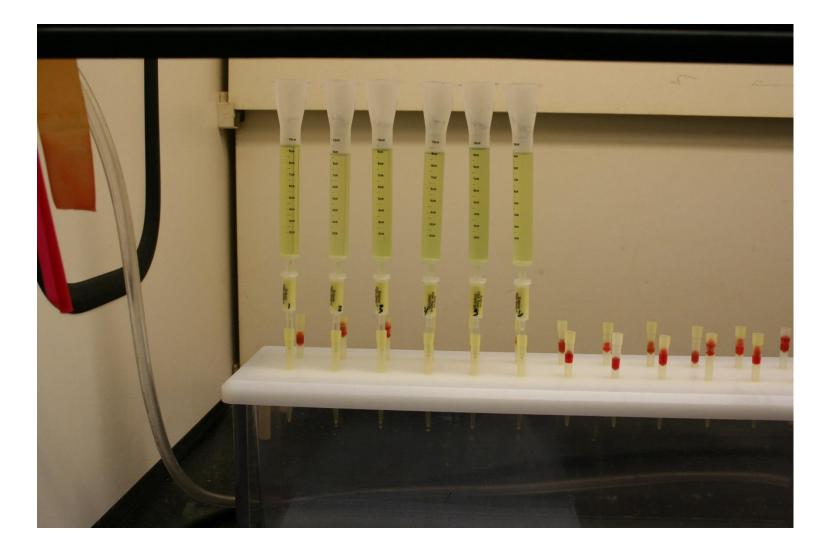
Column Load Solution

Rapid Ra-226 Separation

Sample	¹³³ Ba Yield	226 Ra Reference Value	²²⁶ Ra Measured Value	Difference
ID	(%)	(mBq smp⁻¹)	(mBq smp ⁻¹)	(%)
1	95.1	36.84	37.23	1.1
2	90.2	36.84	31.86	-13.5
3	95.5	36.84	34.57	-6.2
4	84.6	36.84	39.61	7.5
5	84.8	36.84	37.69	2.3
6	88.5	36.84	36.56	-0.8
Avg	89.8		36.3	-1.6
SD	4.8		2.7	
% RSD	5.3		7.5	
			50 g bass	


Sample	¹³³ Ba Yield	²²⁶ Ra Reference Value	²²⁶ Ra Measured Value	Difference
ID	(%)	(mBq smp⁻¹)	(mBq smp⁻¹)	(%)
1	84.8	36.84	38.15	3.6
2	86.2	36.84	34.87	-5.3
3	74.6	36.84	38.05	3.3
4	88.7	36.84	36.50	-0.9
5	87.9	36.84	35.76	-2.9
6	74.2	36.84	38.56	4.7
Avg	82.7		37.0	0.4
SD	6.6		1.5	
% RSD	8.0		4.0	
			100g bass	

Sample	¹³³ Ba Yield	²²⁶ Ra Reference Value	²²⁶ Ra Measured Value	Difference
ID	(%)	(mBq smp⁻¹)	(mBq smp ⁻¹)	(%)
1	82.7	36.84	35.26	-4.3
2	88.1	36.84	37.55	1.9
3	94.1	36.84	35.86	-2.7
4	78.8	36.84	36.42	-1.1
5	82.1	36.84	33.50	-9.1
6	89.7	36.84	33.67	-8.6
Avg	85.9		35.4	-4.0
SD	5.7		1.6	
% RSD	6.6		4.5	
			50g beef	


Sample	¹³³ Ba Yield	²²⁶ Ra Reference Value	²²⁶ Ra Measured Value	Difference
ID	(%)	(mBq smp⁻¹)	(mBq smp⁻¹)	(%)
1	101.4	36.84	33.44	-9.2
2	97.9	36.84	33.40	-9.3
3	105.3	36.84	35.73	-3.0
4	97.6	36.84	36.43	-1.1
Avg	100.6		34.8	-5.7
SD	3.6		1.6	
% RSD	3.6		4.5	
			100g beef	

Approach – employ DGA Resin, robust, no waiting for ingrowth

- 50 gram sample aliquot
- 'Reverse' Aqua regia digestion, then multiple nitric acid additions and evaporation, then hydrogen peroxide (alternate with HNO₃), furnace overnight, final wet-ash
- Load to DGA Resin in 8M HNO_3 plus boric acid/Al(NO_3) $_3$
 - Very high k' for Y(III)
- Purify Y-90, count by gas flow proportional counting, yield via ICP-MS
 - Option for very high Cs-137, insert YF₃ precipitation step
 - With enhanced Cs-137 removal step , adding 37 Bq Cs-137 had no adverse impact on results
 - LSC or Cerenkov can be utilized as well
- Y-91 from fresh FP release will interfere, however addition count (s) may allow resolution via simultaneous equations H₁₇C₈,

Y-90 Purification on DGA Resin

Results for Cheese Spiked with Sr-90

Sample	Y carrier Yield	90Sr Reference Value	90Sr Measured Value	Difference
ID	(%)	(mBq g ⁻¹)	(mBq g ⁻¹)	(%)
1	82.0	5.92	5.54	-6.37
2	84.8	5.92	5.80	-2.04
3	84.3	5.92	5.66	-4.38
4	85.6	5.92	5.67	-4.24
5	83.8	5.92	5.75	-2.92
6	86.9	5.92	5.84	-1.41
Avg. Spiked Smps	84.6			-3.6
SD	1.7			1.8
% RSD	2.0			
		60 minute count		

Results for Cheese Spiked with Sr-90

Sample	Y carrier Yield	90Sr Reference Value	90Sr Measured Value	Difference
ID	(%)	(mBq g ⁻¹)	(mBq g ⁻¹)	(%)
1	86.1	5.64	5.62	-0.38
2	87.2	5.64	5.39	-4.37
3	93.2	5.64	5.29	-6.10
4	95.7	5.64	5.19	-8.03
5	93.5	5.64	5.33	-5.51
6	92.8	5.64	5.96	5.72
Avg. Spiked Smps	91.4			-3.1
SD	3.9			5.0
% RSD	4.2			
		60 minute count	37 Bq Cs-137 added	

Optional CaF₂/YF₃ precipitation step to remove very high interferences such as Cs-137

- Significant progress on rapid radioanalytical methods for urban matrices
 - Limestone and marble
 - Concrete
 - Granite and steel

New work

- Ra-226 in fish and beef
 - Cation exchange resin +DGA Resin
 - Approach can be applied to other biological samples
- Sr-90 in cheese
 - No waiting for Y-90 ingrowth, robust
 - Enhanced removal of beta interferences
- Ongoing research for Po-210 in urban matrices