Measurement of ³⁶Cl and ¹²⁹I in decommissioning wastes

Phil Warwick, Dave Reading & Ian Croudace University of Southampton

Origin of ³⁶Cl

- ³⁶Cl is predominantly produced via neutron activation of naturally occurring ³⁵Cl.
- ³⁶Cl is a long lived (3.02 x 10⁵ y) beta emitting radionuclide (E_{max} = 709.6 keV).
- ³⁶Cl is present in nuclear graphite, concretes, ion exchange resins & desiccants.
- Characterisation of ³⁶Cl in nuclear wastes is important due to its mobility in the geosphere and high soil – plant transfer factor

Origin of ¹²⁹I

- ¹²⁹I is a fission product and is also produced via neutron activation of Te isotopes.
- ¹²⁹I is a long lived (1.57 x 10⁷ y) beta emitting radionuclide (E_{max} = 154 keV).
- ¹²⁹I is present in activated carbon filters, ion exchange resins & fuel pond sludges.
- Characterisation of ¹²⁹I in nuclear wastes again due to its mobility and its long half life.

Proposed analytical scheme

Thermal desorption of halogens

¹²⁹I separation for AMS and LSC

No catalyst Zone filled with quartz beads

*Hou, X., Wang, Y., 2016. Determination of ultra-low level 129I in vegetation using pyrolysis for iodine separation and accelerator mass spectrometry measurement. J. Anal. At. Spectrom. doi:10.1039/C6JA00029K

Recovery of halogens

Overall recovery = $k_1 \times k_2 \times k_3$

Thermal desorption of ³⁶Cl

From irradiated KCl

Trapping of ³⁶Cl

Theoretical capacity for 20ml 6mM Na₂CO₃ is 8.5 mg Cl

Recovery of ³⁶Cl from standards

Results for replicate standard analyses

Mean recovery = 86%(all in 1st Na₂CO₃ bubbler)

Blanks run between samples Carry over between samples < 0.1% Residual activity in sample boat ~ 0.3%

Recovery of ³⁶Cl over time

Thermal desorption profiles – ¹²⁹I

Effect of stable I mass

Trapping agent	Cl (mg)	l (mg)
0.05% TMAH	2	7
0.5% TMAH	20	70
6mM Na ₂ CO ₃	9	30
1M NaOH	710	2540

Theoretical trapping capacities for a 20ml bubbler.

Effect of CO₂

Recovery of ¹²⁹I from various matrices

Slightly lower recoveries observed for Mg(OH)2. lodine retained in the sample boat even when combusted at 950°C

Chemical separation of Cl and I

© Triskem International

Characterisation of the Cl resin

Retention of ${}^{36}Cl$ and ${}^{129}l$ in 1M H_2SO_4

Isotope	D,,, retention
CI-36	1600
I-129	1980

D_w values for different KSCN concentrations

	Cl-36	I-129
KSCN conc.	D _w elution	D _w elution
0.01M	1.7	12000
0.05M	0.4	15000
0.1M	0.7	4000
0.2M	0.4	9000

 quantitative uptake of both nuclides by silver loaded Cl-resin

- ³⁶Cl is eluted quantitatively at any KSCN concentration
- ¹²⁹I remains on the resin at any KSCN concentration

D_w values for different Na₂S concentrations

Na ₂ S conc	Mean D _w
0.04M	40
0.09M	15
0.18M	0.7
0.35M	0.8

• ¹²⁹I is eluted at elevated Na₂S concentrations

Loading capacity

Analyte	Theoretical value	Experimental value
I-	14.9mg	16.3±1.6mg
CI-	4.2mg	4.3 ±0.2mg

Loadings are dependent on the quantity of Ag initially loaded onto the resin. Above values are based on 13mg Ag loading

Separation of ³⁶Cl & ¹²⁹I from 1M NaOH

Separation of ³⁶Cl & ¹²⁹I from 6mM Na₂CO₃

Separation of ¹²⁹I from TMAH

Separation of interferents

	³⁶ Cl fraction	¹²⁹ I fraction
³ HTO	> 500	> 2000
¹⁴ CO ₃	7	5000
¹⁴ C modified wash	700	
³⁵ S modified wash	1500	1000
³⁶ Cl		> 2000
129	1300	

Decontamination factors

Loading in Na_2CO_3 Modified wash – 1M H_2SO_4 wash prior to Cl elution

Purification of ³⁶Cl from desiccant

Bubbler solution before separation

Purified Cl fraction

Summary

- Initial studies indicate that ³⁶Cl and ¹²⁹l are liberated from solid matrices using thermal desorption although further work is required to optimise ³⁶Cl recoveries.
- Other volatile radionuclides co-trapped with ³⁶Cl / ¹²⁹I can be efficiently separated using Cl-resin.
- The combination of combustion and isolation of Cl and I using Cl-columns provides a rapid approach for the separation and purification of ³⁶Cl and ¹²⁹I from solid matrices avoiding the need for time-consuming digestion procedures.
- The Cl and I fractions arising from the separation are readily miscible with commercially available liquid scintillation cocktails.
- Further studies are required to validate the technique and confirm that ³⁶Cl can be quantitatively extracted from the range of materials routinely analysed for ³⁶Cl.
- Parallel studies of ¹²⁹I measurement by ICP-QQQ are also being undertaken.

Any questions?

