

Studies on the use of TK400 resin for the separation of ²³¹Pa from actinide elements and decay products

Peter Ivanov National Physical Laboratory, UK peter.ivanov@npl.co.uk

TrisKem UGM, 21 September 2018, Cambridge

- Motivation
- Challenges in Pa chemistry
- IX and EC separation schemes
- TK400 resin
- Results
- Conclusions

Protactinium

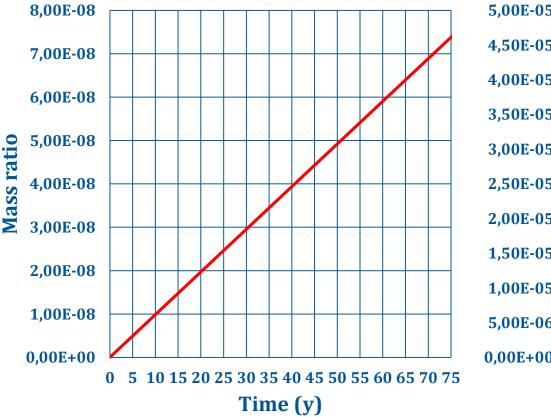
• One of the rarer elements...

- Discovered in 1913
- Element 91
- Occurs with uranium

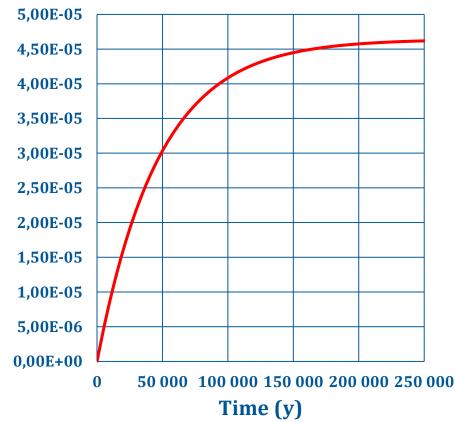
Concentration: $\sim 330 \text{ ng/g uranium}$ Mass ratio 231 Pa: 226 Ra: $0.961 \pm 0.018 (k=2)$

Naturally occurring isotopes

- Protactinium-231:
- Protactinium-234m:
- Protactinium-234: Branching ratio


- $T_{\frac{1}{2}} = 32670 (\pm 260) y \qquad 576 \text{ Bq/g U}$ $T_{\frac{1}{2}} = 1.159 (\pm 0.011) \text{ m} \qquad 12350 \text{ Bq/g U}$ $T_{\frac{1}{2}} = 6.70 (\pm 0.5) \text{ h} \qquad 18 \text{ Bq/g U}$ $0.15 (\pm 0.01)$
- Neptunium (4n+1) series
 - Protactinium-233: $T_{\frac{1}{2}} = 26.98 (\pm 0.02) d$

Forensics and sedimentation



- Protactinium-231
 - Long half-life means it is suitable for dating

Ingrowth of ²³¹Pa into ²³⁵U

Ingrowth of ²³¹Pa into ²³⁵U

Chemistry

- Approach is mainly limited by protactinium chemistry
- Analogous to niobium and tantalum
- Chemistry dominated by chloro- or fluoro- complexes
- Hydrolyses and precipitates easily
- Behaviour exacerbated at trace (<10-8 M) levels
- Solubilised by oxalate, citrate and tartrate
- Most knowledge from UKAEA work in 1950s and 1960s
 ~125 g (~220 GBq) recovered from uranium waste in UK nuclear
 programme (finally located as mainly being at JRC Karlsruhe former ITU)
- Studied in hydrochloric acid

Separation

- Needed to recover material from NPL solutions with questionable chemistry
 - Legacy material from early 1990s
 - Dissolved solid source...solution is >8M HCl, contains HF traces, Fe, U, Th
 - Aims:
 - Separation of protactinium in high yield
 - Recovery of ²²⁷Ac daughter, ²²⁷Th and ²²³Ra for data measurements
 - High purity ²³¹Pa required for standardisation
 - Chemical issues
 - Neither ion exchange, nor existing extraction chromatography were giving the consistent yields and purities required
 - Tantalum carrier interferes with mass spectrometry work
 - Solvent extraction?
 - No! Solvent extraction is not favoured...
 - But long chain alcohols and ketones are effective and specific for protactinium

Cation exchange with HCI

- Few indications in the literature what was possible
 - Strategy: Absorb neptunium on the resin
 - Use the anionic nature of protactinium in solution to separate

Column:AG50-X8(1g)Load solution:0.2 M HCl(10 mL)Pa wash solution:0.2 M HCl(10 mL)233Pa washes through the resin237Np is retained(10 mL)237Np is retained.2 M HCl/1 M HF(10 mL)237Np is removed.2 M HCl/1 M HF(10 mL)

- Protactinium-233 yield: 89%
- Neptunium-237 yield: ~36%

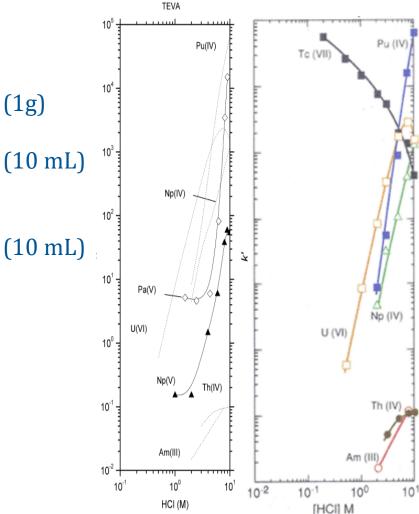
Cation exchange with HNO₃

- Few indications in the literature what was possible
 - Strategy: Absorb neptunium on the resin
 - Use the anionic nature of protactinium in solution to separate

Column:AG50-X8(1g)Load solution: 1 M HNO_3 (10 mL)Pa wash solution: 1 M HNO_3 (10 mL) 233 Pa washes through the resin237Np is retained(10 mL) 237 Np is retained $1 \text{ M HNO}_3/1 \text{ M NH}_4$ F(10 mL) 237 Np is removed $1 \text{ M HNO}_3/1 \text{ M NH}_4$ F(10 mL)

- Results
 - Protactinium-233 yield: 83%
 - Neptunium-237 yield: ~9%

TEVA with HCI



Published data suggests that Pa is bound weakly by HCl on TEVA

- To separate

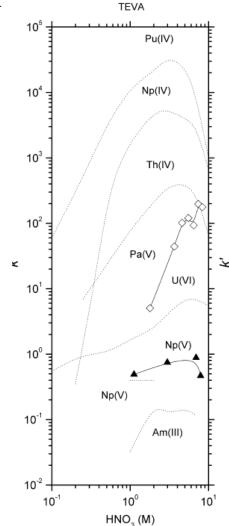
Column:TEVALoad solution:2 M HClPa wash solution:2 M HCl 233 Pa washes through the resin 237 Np is retainedNp wash solution:0.1 M HCl 237 Np is removed

- Protactinium-233 yield: 83%
- Neptunium-237 yield: ~11%

TEVA with HNO₃

 Published data suggests that Pa is bound strongly by HNO₃ on TEVA

(1g)


(10 mL)

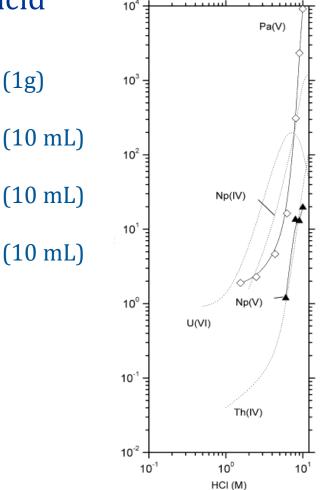
(10 mL)

- To separate

Column:TEVALoad solution: 8 M HNO_3 Pa wash solution: 8 M HNO_3 233 Pa washes through the resin 237 Np is retainedNp wash solution: 1 M HNO_3 237 Np is removed

- Protactinium-233 yield: ~100%
- Neptunium-237 yield: ~30
 (in Pa fraction)

UTEVA with HCI


U/TEVA

 Published data suggests that Pa is bound strongly by HCl on UTEVA with strong acid

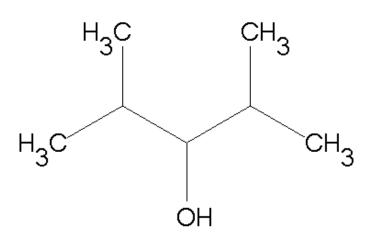
- To separate

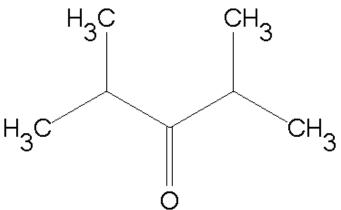
Column:UTEVALoad solution:9 M HClTh wash solution:4.5 M HCl²²⁹Th washes through the resinPa wash solution:4.5 M HCl/0.1 M HF²³³Pa washes through the resinU wash solution:0.1 M HCl²³²U is removed

- Protactinium-233 yield: ~40%
- Thorium-229 yield: $\sim 80\%$
- Uranium-232 yield: ~80%

Resin	Eluant	Ра	Np	U	Th	Comments
AG50	HCl	89%	Nil	Nil	Nil	Pa in good yield, separation from Np is effective
	HNO ₃	83%	Nil	n/a	n/a	Pa in good yield, separation from Np is effective
TEVA	HCl	83%	~30%	Nil	Nil	Pa in good yield, separation from Np is not very effective
	HNO ₃	~100%	~30%	n/a	n/a	Pa in good yield, separation from Np is not very effective
TBP	HCl	~39%	Nil	n/a	n/a	Pa in poor yield, separation from Th, U and Np is effective
UTEVA	HCl	40%	Nil	Nil	Nil	Pa in poor yield, separation from Th, U and Np is effective

Alcohols and ketones

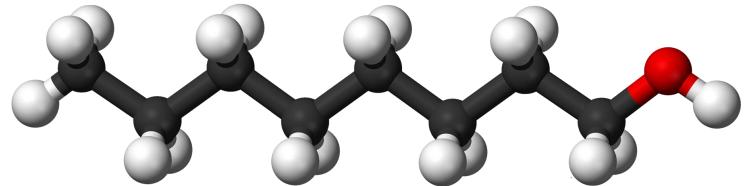



Effective

- Long been known that alcohols and ketones are effective in extracting protactinium

Needs

- Limited solubility in water
- Good k_d for extraction for protactinium
- Low toxicity and volatility
- Safety
 - In general, agitation of volatile solvents containing α-emitters makes people uncomfortable
 - Very uncomfortable

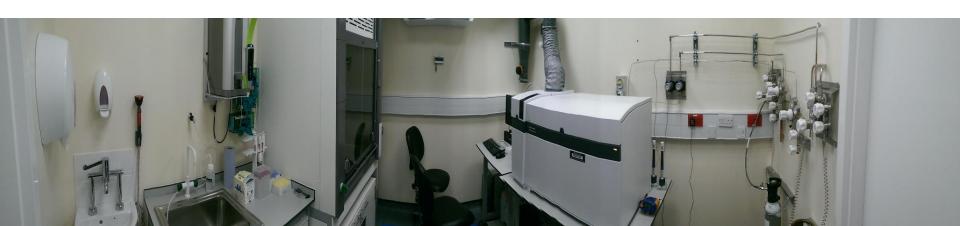


TrisKem TK-400 resin

- Developed by Knight, et al
 - Extractant is octan-1ol adsorbed onto a support
 - Octan-1-ol is selective for protactinium
 - Was used successfully for ²³³Pa separation
 - Great! But not commercially available at that time

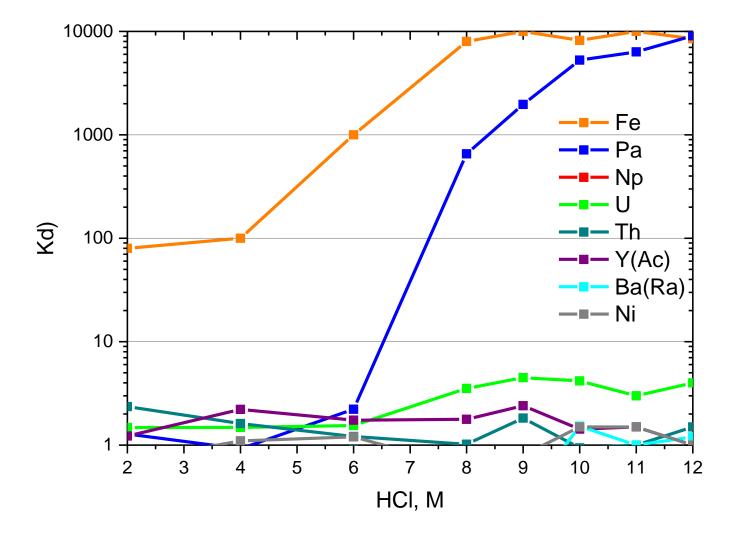
Knight, A.W., Nelson, A.W., Eitrheim, E.S., Forbes, T.Z. and Schultz, M.K., 2016. A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. Journal of Radioanalytical and Nuclear Chemistry, 307, 59–67 (DOI 10.1007/s10967-015-4124-3)

Resin tests



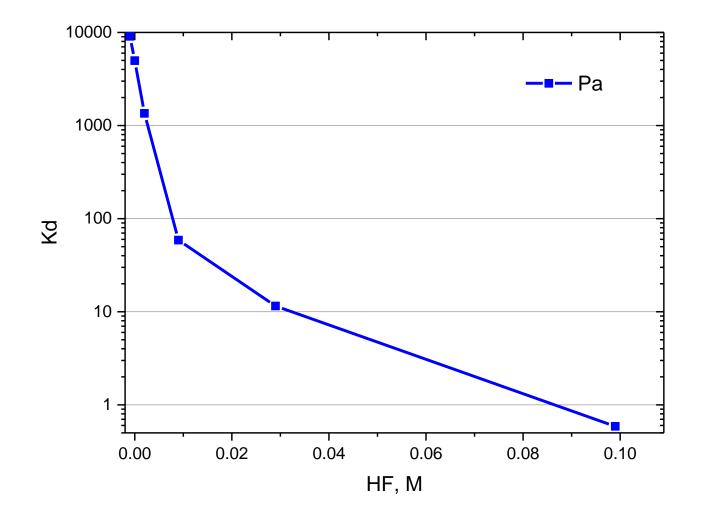
- Worked with TrisKem
 - Developing TK-400 as a product.
 - Knight's work aimed at neptunium/protactinium separation
- Separations needed
 - Resolution of mixture into:
 - Protactinium fraction:Standardisation and decay dataActinium fraction:Half-lifeThorium fraction:Ongoing studies of 227ThRadium fraction:Supporting work on Xofigo
 - Separation from thorium, uranium, neptunium and plutonium
- Extending scope of current knowledge
- Extractable species [PaOCl₆]³⁻

Mass spectrometry



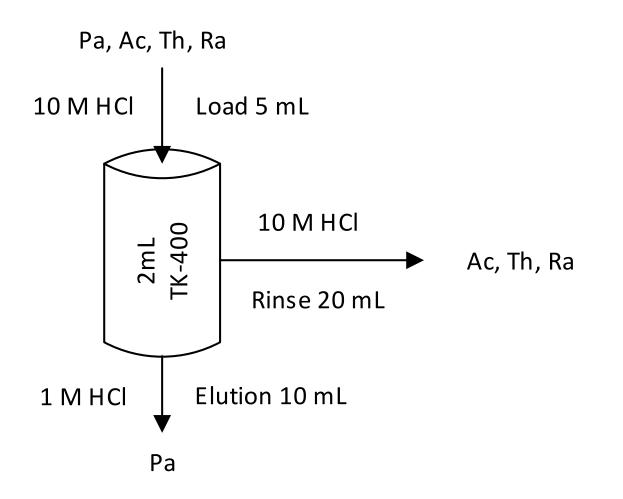
- Flexible and quick
 - Can measure Y, Ba, Th and U at the same time...
 - ...and we have got one!
- Triple quadrupole ICP-MS (ICP-QQQ-MS)
 - HEPA-filtered lab under positive pressure
 - Fume cupboard
 - Deionised water unit

Results: Distribution coefficients

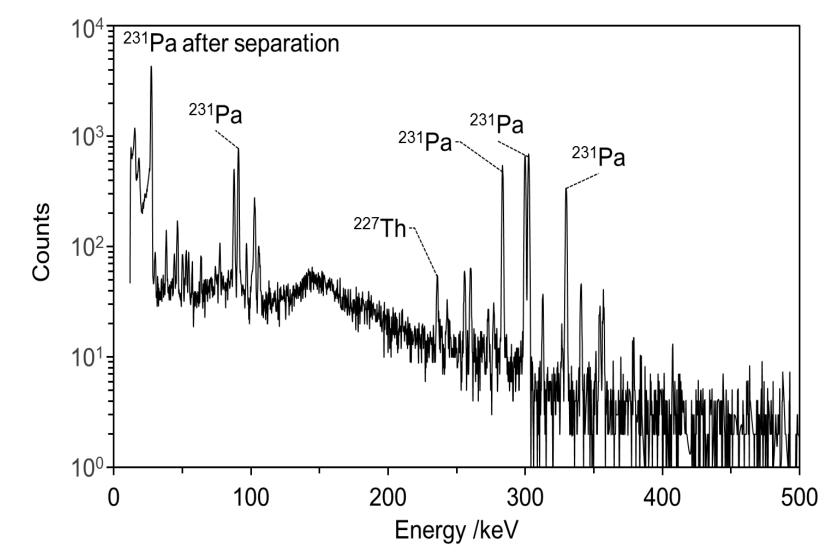


Distribution coefficients of Pa, Np, U, Th, Y(Ac), Ba(Ra), Fe and Ni on TK-400 resin as a function of HCl molarity

Results: The effect of HF

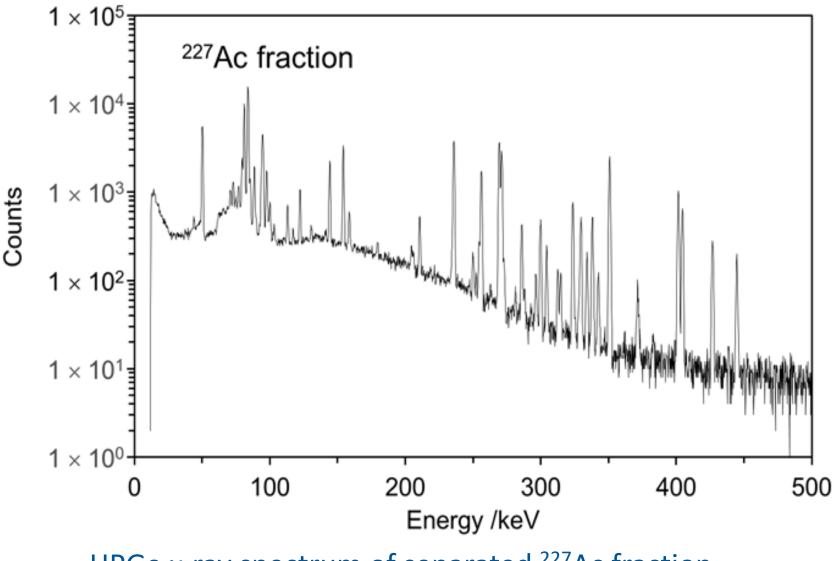


The effect of HF molarity on Pa distribution coefficient for TK-400 in 12 M HCI



Flowchart representing separation of Pa from its progeny using TK-400

Results: Gamma-spectra



HPGe γ -ray spectrum of ²³¹Pa fraction collected after radiochemical separation using TK-400 resin

Results: Gamma-spectra

HPGe γ -ray spectrum of separated ²²⁷Ac fraction

Conclusions

- The separation of protactinium is favourable on TK400
 - At >10 M hydrochloric acid, $k_d \sim 9000$
- Other elements (Ra, Ac, Th, U, Np)
 - At >10 M hydrochloric acid, k_d <5
 Remove from the column by rinsing with conc HCl
- Measurements by γ-spectrometry
 - Actinium fraction (10 M hydrochloric acid) Contains vast majority of ²²⁷Ac, ²²⁷Th and ²²³Ra No evidence of ²³¹Pa
 - Protactinium fraction (removed with 6 M hydrochloric acid) Contains vast majority of ²³¹Pa No evidence of ²²⁷Ac or ²²³Ra, trace ²²⁷Th consistent with the ingrowth
- Ongoing primary standardisation measurements

Acknowledgement

Chemistry team

Simon Jerome, Ben Russel

Gamma-spectrometry

Sean Collins

Primary standardisation Arzu Arinc, John Keightley

TrisKem:

Aude Bombard, Steffen Happel

Thank you!

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).