

Radionuclide determinations with:

• **PSresin** (separation and detection)

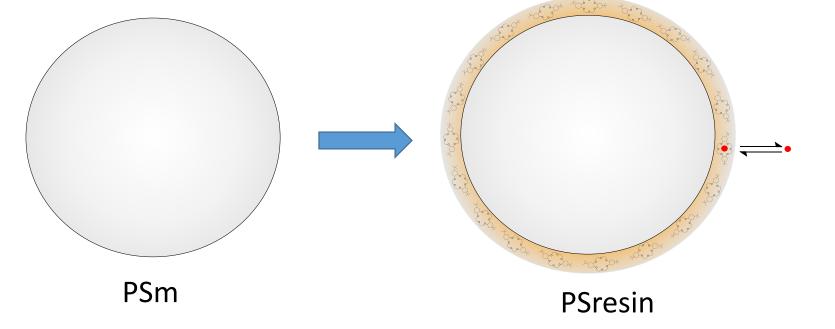
• **MASS** (automated separation)

• WaterRadd (on-line detector)

Tarancón, A.; Bagán, H.; García, J.F.

- **PSresin** (separation and detection) ullet
- **MASS** (automated separation)
- WaterRadd (on-line detector) ullet

- increase **laboratory capability** by reducing . Reagents Common purpose:


- . Waste
- . man-power
- . time

- easier and friendly radionuclide determinations

Plastic Scintillating resins (PSresin) – Extractive Scintillating resins

PSresin is a Plastic Scintillating microsphere (PSm) with a selective extractant

Detection provided by the PSm Selectivity based on the extractant interaction

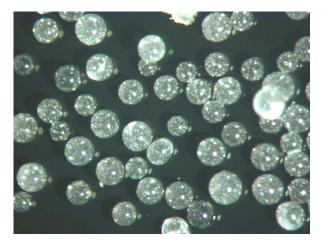
Psresin UNIFIES CHEMICAL SEPARATION + PREPARATION FOR MEASUREMENT STEPS

Plastic Scintillating microspheres (PSm)

PSm is a solid "scintillation cocktail"

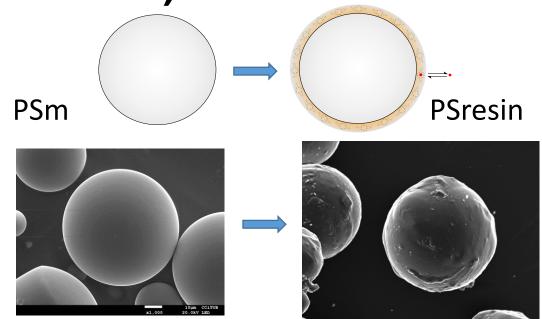
PSm solid platform to implement separation strategies

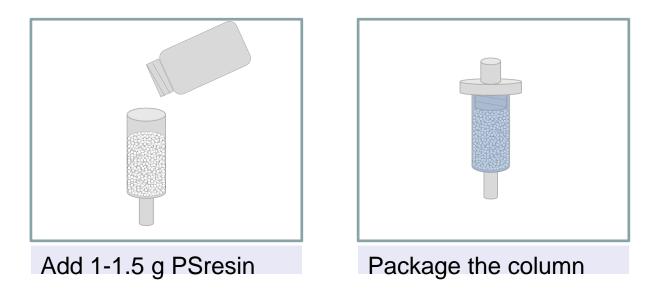
Composition: . Solvent: . Polystyrene, Polyvinyiltoluene. . Scintillators: PPO, POPOP, , p-T, bis-MSB


Format: Plastic scintillator microspheres (PSm) (10 – 300 μm)
Plastic scintillator foils (PSf) (50 – 100 μm)

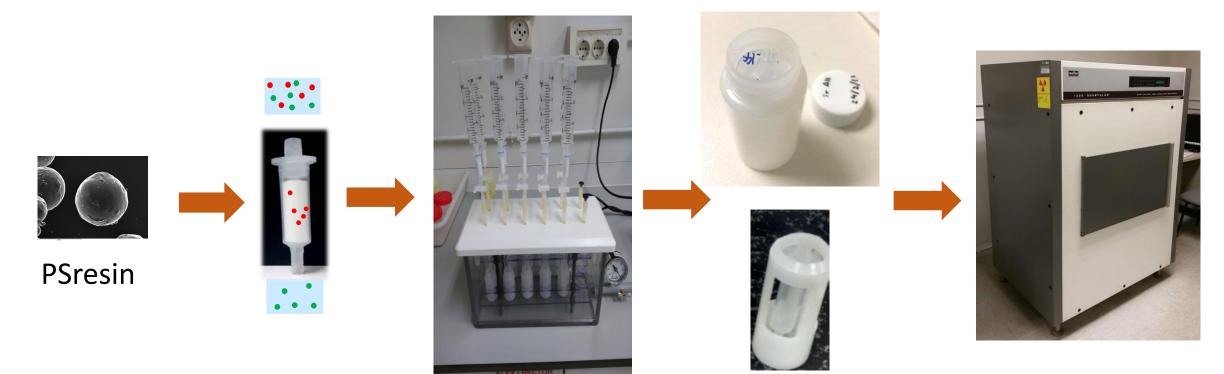
Detection capabilities.

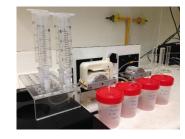
. Sample solution

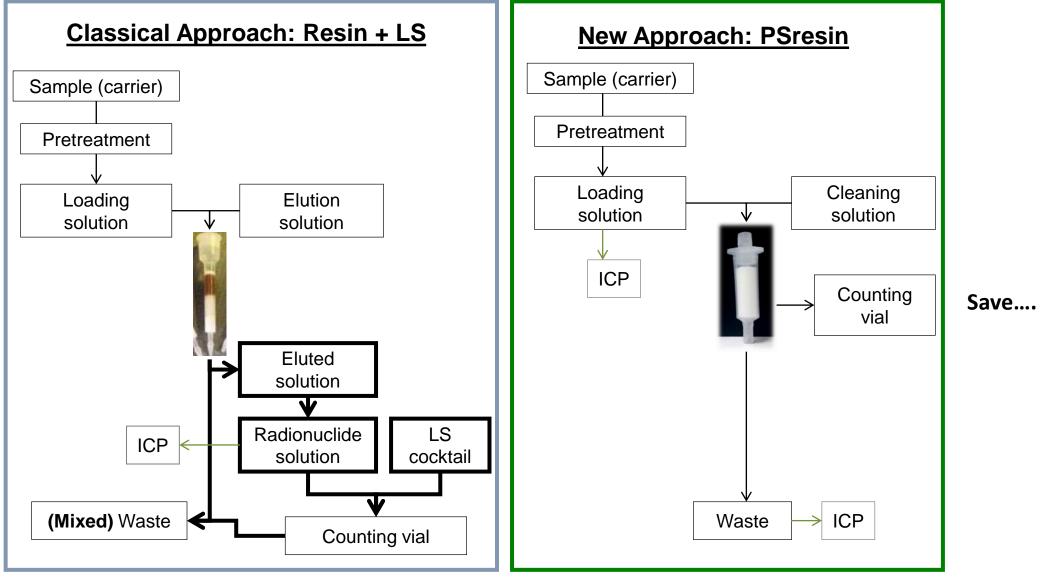



Beta	Particle size (µm) 3	H (%)	¹⁴ C (%)	⁹⁰ Sr/ ⁹⁰ Y (%)
Deta	57	1,8	63	190
Alpha	Particle size(µm)	241	Am(%)	²³⁶ U (%)
	70 µm		96	75

PSresin in practice




Cartridge preparation

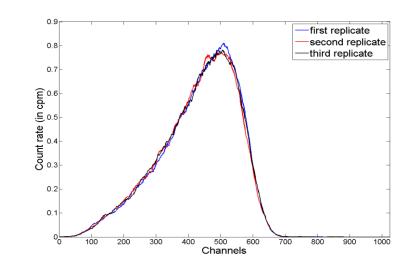

PSresin in practice

PSresin in practice

PSresin applications

- Determination of ⁹⁹Tc in aqueous/urine samples
- Determination of ¹⁴C in radiotracer samples
- Determination of ⁸⁹Sr/⁹⁰Sr in milk samples in emergency situations
- Determination of ²¹⁰Pb in water
- Determination of ²¹⁰Pb in Bronze sculptures

PSresin applications: Determination of ⁹⁹Tc in aqueous/urine samples


PSresin: **UB - PSm of 60 µm** Vial-column format: **2 mL SPE cartridge** Separation device: **vacuum box** Carrier: **1 mg of Re**

Extractant: Aliquat 336

Conditioning: 2 mL HCI 0.1M Sample: 10 mL in HCI 0.1M Cleaning: 2 mL water 4 times

Breakthrough volume > 200 mL

Recovery of Rhenium (by ICP-OES)	> 98.8 %
Recovery of ⁹⁹ Tc (by LS):	> 98.8 %
⁹⁹ Tc Detection Efficiency (%):	89.5(0.6)
Background (cpm):	1.09
Quenching Parameter (SQP(E)):	787(7)

PSresin applications: Determination of ⁹⁹Tc in WATER samples

Extractant: Aliquat 336

Spike sample to achieve HCI 0.1M

Cleaning: Water

Sample		Activity Calc (dpm mL ⁻¹)	Error (%)
Sea Water	24,3	23,0	-5,3
Sea Water	24,3	25,1	3,3
Sea Water	24,2	22,8	-6,2

PSresin applications: Determination of ⁹⁹Tc in URINE samples

Extractant: Aliquat 336

Sample: 100 mL of urine

Pretreatment:

- Add 10 mL of 65% HNO3 and evaporate to dryness
- Dissolved in 5 mL of 65% HNO3
- Evaporated to dryness
- Heat at 550 C in a muffle oven for 30 min.
- Dissolved in 3mL of HNO3
- Treated with 100 mL of D.D. water
- Add 5 mL of H2O2 and heated to 90 C for 1 h Cleaning: Water
- MDA (100 mL, 24h): 0.036 Bq L⁻¹

Sample		Activity Calc (dpm mL ⁻¹)	
Urine	0,43	0.44	2,4
Urine	0,46	0,42	-6.5

UNIVERSITAT DE BARCELONA

MASS (Modular Automated Separation System)

PSresin + MASS. Determination of ⁹⁹Tc in WATER samples - Automatic vs. Manual:

MASS:

Similar to manual process.

. Modular

- . Vacuum chamber
- . No valves (easy maintenance)

Procedure

- 1. Conditioning: 2 mL HCI 0.1M
- 2. Sample loading: 10 mL
- 3. 1^{st} , 2^{nd} and 3^{rd} cleaning: 2 mL HF 0.1M/HNO₃ 0.1M
- 4. 4^{th} cleaning : 2 mL H₂O

Calibration

10mL containing 240 dpm of ⁹⁹Tc, 1 mg of Re in HCI 0.1M

	Manual [%]	Automatic [%]
Background (cpm)	1.28	1.06
Yield	Quantitative (>98.8%)	Quantitative (>99.8%)
SQP(E)	802(8)	795(5)
Detection efficiency [%]	85.3(1.3)	88.2(1.3)

MASS (Modular Automated Separation System)

PSresin + MASS. Determination of ⁹⁹Tc in WATER samples - Automatic vs. Manual:

River water	Activity	Activity mea	asured [Bq/Kg]	Deviat	ion [%]
sample	[Bq/Kg]	Manual	Automated	Manual	Automated
1 st replicate	18.2	16.9	18.6	-7.3	2.1
2 nd replicate	16.8	17.0	16.8	1.2	0.1
3 rd replicate	18.0	18.3	17.7	1.7	-1.5
Mean				-1.5(5.1)	0.2(1.8)

See water comple	Activity	Activity meas	sured [Bq/Kg]	Deviat	ion [%]
Sea water sample	[Bq/Kg]	Manual	Automated	Manual	Automated
1 st replicate	17.5	17.4	17.6	-0.8	0.6
2 nd replicate	17.4	17.2	18.1	-1.2	4.0
3 rd replicate	18.9	18.0	17.7	-5.0	-6.4
Mean				-2.4 (2.3)	-0.6 (5.3)

PSresin applications: Determination of ¹⁴C in OIL RESERVOIR radiotracer

Oil reservoir radiotracer: **S**¹⁴**CN**⁻ Secondary recovery Study of oil reservoir dynamics

Pre-treatment:

Filter

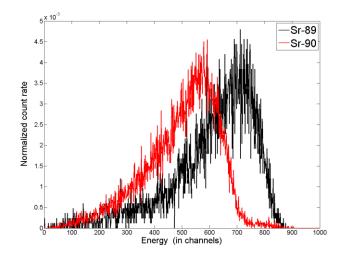
Concentration & purification with ionic exchange column Elute with NaClO₄ 6 M

Extractant: Aliquat 336

Separation conditions: water

- **Recovery:** 100 %
- **Detection efficiency:** 54(1)%
- MDA (100 mL, 5h): 0.084 Bq L⁻¹

	Conductivity	ТОС	Activity	(Bq L ⁻¹)
Sample	(mS cm⁻¹)	(mg L ⁻¹)	PS resin	IFE
1	52.1 ± 0.1	13.6 ± 0.3	2.89 ± 0.14	2.98 ± 0.09
2	51.5 ± 0.2	18.4 ± 0.3	2.01 ± 0.04	2.21 ± 0.06
3	50.8 ± 0.2	22.4 ± 0.7	1.00 ± 0.09	1.02 ± 0.07
4	51.3 ± 0.1	39.2 ± 0.6	1.42 ± 0.02	1.36 ± 0.05
5	51.5 ± 0.2	18.4 ± 0.7	2.66 ± 0.08	2.76 ± 0.08

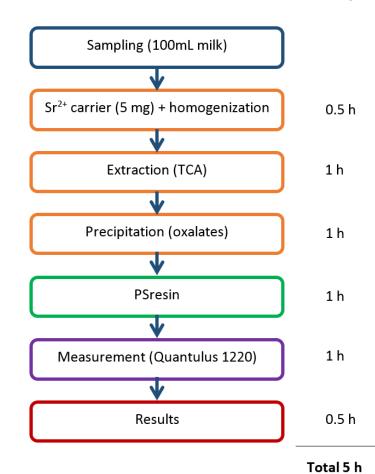


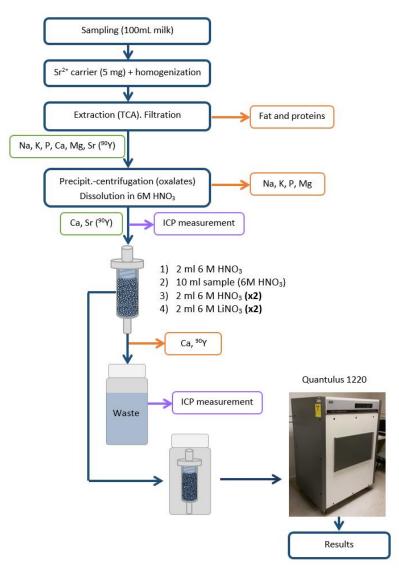
PSresin applications: Determination of ⁸⁹Sr/⁹⁰Sr in milk in emergency situations

Objective: reduction of total **analysis time**.

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol **Sample**: 100 mL milk

Detection efficiency


	⁹⁰ Sr	⁸⁹ Sr
Stable Sr) (mg)	3, 4, 5, 6, 7	3, 4, 5, 6, 7
Average SQP(E)	789(8)	791(4)
Average Efficiency) (%)	82(7)	89(4)


⁹⁰Sr+⁸⁹Sr Average Efficiency (%): 86(6)

PSresin applications: Determination of ⁸⁹Sr/⁹⁰Sr in milk in emergency situations

Objective: reduction of total analysis time.

PSresin applications: Determination of ⁸⁹Sr/⁹⁰Sr in milk in emergency situations

Objective: reduction of total analysis time.

Sample: 100 mL milk (Cow, Sheep, Goat, Semi-skimmed, Skimmed, Powder, Pasteurized)

Pre-treatment:

. TCA, Oxalates, redisolution in HNO₃6 M. **Cleaning**: HNO₃6 M and LiNO₃ 6 M Carrier: 5 mg Sr²⁺

Type of milk	Pre-treatment	Column	Total Recovery
	Recovery (%)	Recovery (%)	(%)
Total samples	93 (4) (4%)	70(4) (6%)	65 (5) (7%)

Type of milk	Pre-treatment recovery (%)	PS resin retention (%)	Total recovery (%)	Activity ⁹⁰ Sr+ ⁸⁹ Sr (Bq/kg dry mass)	Relative bias ⁹⁰ Sr+ ⁸⁹ Sr (%)
IAEA-473 milk powder	88.6	79.6	70.5	207.6 (198.0*)	-3.5 (0.4*)
IAEA-473 milk powder	93.1	78.7	73.3	204.6 (195.7*)	-4.7 (-0.8*)
IAEA-473 milk powder	92.1	76.7	70.6	203.3 (194.4*)	-5.2 (-1.4*)

MDA (100 mL, 1h): 0.36 Bq L⁻¹

PSresin applications: Determination of ⁸⁹Sr/⁹⁰Sr in milk in emergency situations

Type of milk	Ratio ⁸⁹ Sr/ ⁹⁰ Sr	Relative bias (⁸⁹ Sr + ⁹⁰ Sr) (%)	Type of milk	Ratio ⁸⁹ Sr/ ⁹⁰ Sı
Cow/whole/UHT	0:1	-2.2 (1.9*)	Cow/whole/UHT	2:1
Cow/whole/UHT	1:0	6.6 (3.0*)	Sheep/semi-skimmed/UHT	2:1
Cow/whole/UHT	1:1	-1.9	Goat/semi-skimmed/UHT	2:1
Cow/semi-skimmed/UHT	1:1	4.5		
Cow/skimmed/UHT	1:1	6.1	Cow/whole/UHT	10:1
Cow/whole/powder	1:1	1.7	Sheep/semi-skimmed/UHT	10:1
Cow/whole/pasteurized	1:1	2.6	Goat/semi-skimmed/UHT	10:1
Goat/whole/raw	1:1	-1.9		Į
heep/semi-skimmed/UHT	1:1	7.0		
Goat/semi-skimmed/UHT	1:1	5.2		
			4	

PSresin applications: Determination of ⁸⁹Sr/⁹⁰Sr in milk in emergency situations

Objective: reduction of total **analysis time**.

Procedure	Sample (L)	Sr ²⁺ carrier (mg)	Recovery % (SD)	Measurement	Relative Bias ⁹⁰ Sr % (SD)	MDA (Bq L ⁻¹)	Time (h)
Brun et al., 2002	0.5	10	63 (7)	Gas Flow Proportional Count.	-2 (5) 0.09		14 - 15
Maxwell et al., 2009	0.1	4.19	75 (17)	Gas Flow Proportional Count.	1 (6)	0.5	7 – 8
Kabai et al., 2011	0.1	10	94 (7)	LSC	-	0.8	7 – 8
IAEA, 2013	0.25	10	70 – 75	LSC	<15%	2 - 5	7 – 8
Sáez-Muñoz et al, 2018	0.1	5	65 (5)	Plastic Scintillation Counting 4 (1)		0.34	5

PSresin applications: Determination of ²¹⁰**Pb in WATER**

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol

Separation conditions: HNO₃ 2M

- **Recovery:** 91(3) %
- **Detection efficiency:** 44(3)%
- MDA (10 mL, 1h): 2.8 Bq L⁻¹

Sample	Activity (dpm/mL)	Activity Calc (dpm/mL)	Deviation (%)		
Ebro river	10,1	10,8	-7,0		
	10,1	11,0	-9,2		
	10,1	9,8	3,6		
Subterranean	10,9	11,7	-7,0		
water	11,4	11,4	0,2		
	11,4	11,8	-4,1		
Congost river	11,0	11,4	-4,2		
	10,4	10,7	-3,3		
	11,4	11,3	0,7		

PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

Objective: minimum amount of sample.

Benin Kingdom Nigeria since 1440 –

English Punitive expedition – 1897

4000 artistic objects (sculptures) from Palace in Museums and collections

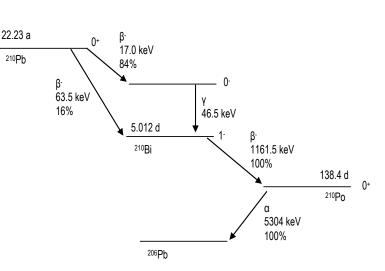
Problem to contribute to solve:

- restitution of cultural heritage objects
- discriminate fake objects in the market

PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

Objective: minimum amount of sample.

Artistic objects - Bronze/Brass sculptures (Cu, Sn, Zn, Pb major)


Pb: 1 – 12%

²¹⁰Pb beta emitter.

Secular equilibrium: ²¹⁰Bi: 35 d ²¹⁰Po: 2 y

Hypothesis:

- Initial ²¹⁰Pb activity of Benin Palace sculptures material origin
- Maximum ²¹⁰Pb residual activity of Benin Palace sculptures.
- Act (sculpture) > Act (maximum residual) → modern or different origin

PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

Objective: minimum amount of sample.

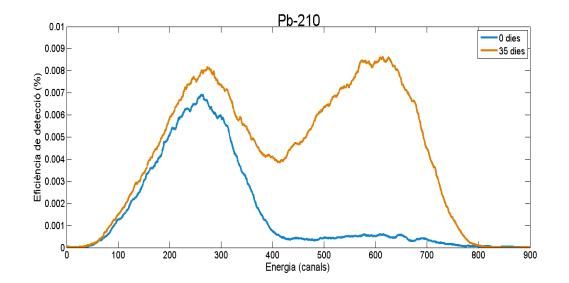
Analytical Feasibility.

. Bronze dissolution: $HF + HNO_3$ (heat)

. Matrix interferences .

Medium HNO₃ 2M

Element	Retention (%)					
Pb	75 ± 2					
Cu	1 ± 2					
Sn	1 ± 2					
Zn	1 ± 1					


PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

Objective: minimum amount of sample.

Analytical Feasibility.

. Radiometric detection

	Detection Eff (%)
t 0 days (²¹⁰ Pb)	47 ± 3
t 35 days (²¹⁰ Pb/ ²¹⁰ Bi)	134 ± 4

Detector

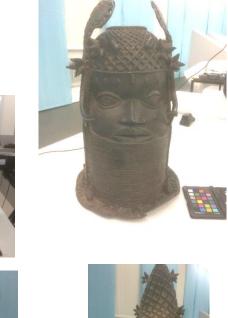
PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

Objective: minimum amount of sample.

Analytical Feasibility.		²¹⁰ Pb	²¹⁰ Pb / ²¹⁰ Bi	²¹⁰ Pb / ²¹⁰ Bi / ²¹⁰ Pc			
Worst scenario	Parameters	time 0 days	time 35 days	time 2 years			
	Detection EFF (%)	46,5 %	136 %	222,35 %			
Composition Pb: 1 % (1-12%) Activity Pb : 10 dpm/g _{Pb} (10 – 110 dpm/g)	200 min	9,49 g	3,23 g	1,98 g			
	1 g	11,6 days	1,4 days	12,7 hours			
	0,5 g	46,5 days	5,5 days	2 days			
		Parameters	20 dpm/g _{Pb} i 1 %	10 dpm/g _{Pb} i 4 %			
		200 min	1,62 g	0,81 g			
		1,4 days	0,5 g	0,25 g			
		5,5 days	0,25 g	0,12 g			

PSresin applications: Discrimination of BRONZE SCULPTURES based on ²¹⁰Pb.

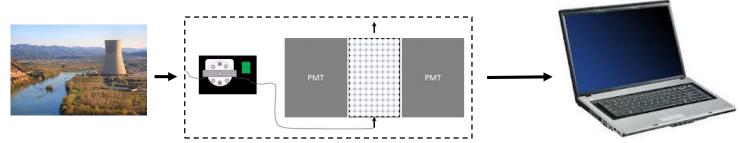
Objective: minimum amount of sample.


Determination of maximum ²¹⁰Pb residual activity_(in progress).

.Collaboration Museum Five Continents (Munich)

- . Two sets:
- Original Benin Sculptures
 - Non Original Benin Sculptures

- . Data: Elemental composition (major and minor).
 - Stable Pb isotopes composition
 - ²¹⁰Pb activity



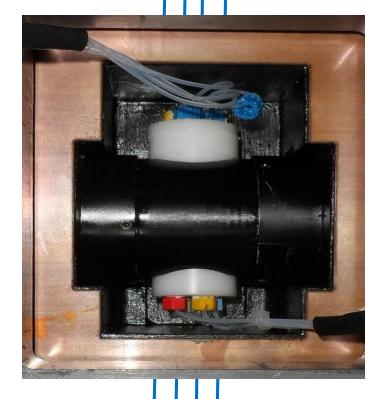
Continuous and on-line alpha and beta determination in aqueous samples

UNIVERSITAT DE BARCELONA

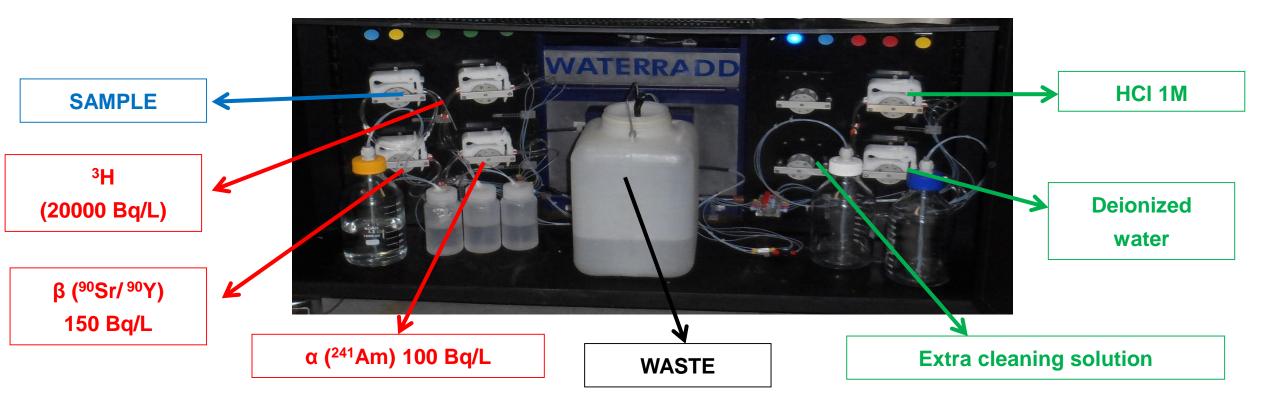
No reagents No waste

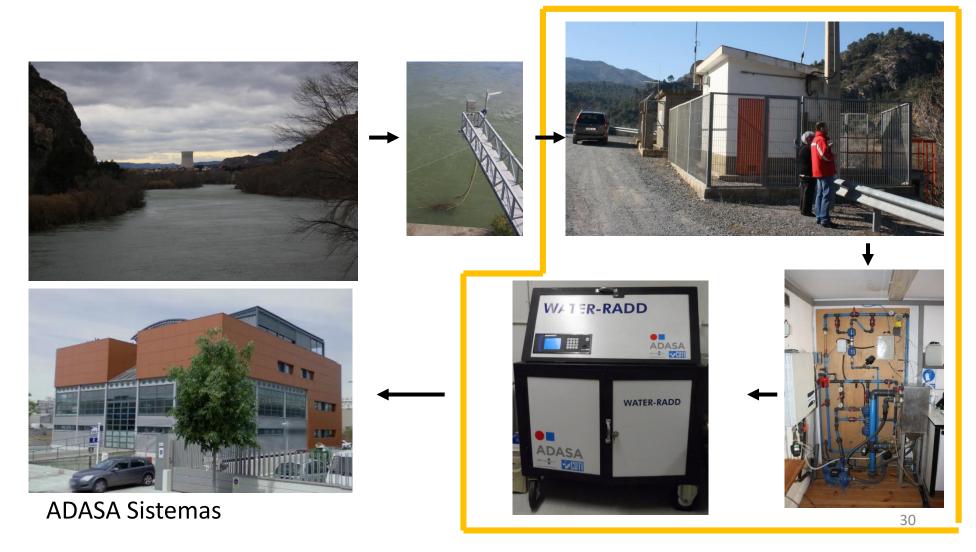
How it works?

- Sample pass continuously through the counting cell
- Counting cell filled with PSm
- Signals are detected by PMT
- Hydraulic system for sample and reagents pumping
- · Active and passive shielding.
- Remotely controlled by computer (5 ' measurements).


Active and passive shielding

Detection Cell: filled with PSmicrospheres




- Made of polystyrene
- Volume approximately of 10 mL
- Filled with 20 gr. of PSm
- Coupled to a pair of PMT
- Water goes from the bottom to top of the cell
- Flow rate: from 3 to 5 mL/min

Continuous monitoring monitoring of Ebro River

UNIVERSITAT DE BARCELONA

WATER-RADD: reporting results

- Data is sent to the remote position with a predefined frequency
- Data is stored in an ACCESS database

- Calibration data
- Configuration history
- Spectrum of the PMT1
- Spectrum of the PMT2
- Count and Timing
- Processes
- Temperature
- Count rates (in cps)

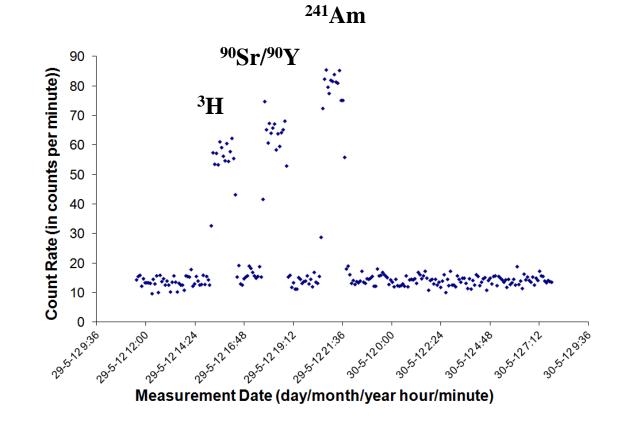
Tabl	a Plantillas Listas de Diseño de tabla × SharePoint × de tabla Tablas	Formular
0	Advertencia de seguridad Se ha desh	abilitado
Tabl	as 💿 «	
	Alarmas	
	Calibrados	
	Configuracion	
	Def_Alar	
	Def_Bits	
	Def_Para	
	Def_Proc	
	Histo_pmt1	
	Histo_pmt2	
	Historicos	
	Procesos	
	T_TEMP	
	Tabla_bits	
	Tabla_palabras	
	TM	
	Valores_Actuales	
_	arado	

WATER-RADD: reporting results

						/								
Fecha_y_Hora	C_PMT1	C_PMT2	C_PMT3	C_PMT4	C_C	12	C_C34	C_C1234	C_CB	C_CF	C_CA	T_TOTAL_AA	T_MUERTO_BB	T_MUERTO_CC
11-5-12 14:33	166340	74511	92483	101643	∇T	252	15739	150	102	71	70	29948	39	344
11-5-12 14:38	167064	75204	92883	104293		251	15696	149	102	73	72	29949	39	344
11-5-12 14:43	166809	75165	95329	101083		216	15678	118	98	64	63	29948	39	344
11-5-12 14:48	167334	75111	93863	102031		229	15863	128	101	72	71	29948	39	346
11-5-12 14:53	167940	75374	92869	101815		209	15671	113	96	72	71	29949	39	346
11-5-12 14:58	169102	75864	96362	101981		237	15507	143	94	63	62	29948	39	349
11-5-12 15:03	168876	75460	93416	105454		248	15727	142	106	72	68	29949	39	348
11-5-12 15:08	169038	75597	95732	107172		236	15806	142	94	56	56	29948	39	349
11-5-12 15:13	169773	75716	93541	102651		222	15847	122	100	66	64	29940	39	349
11-5-12 15:18	170132	76331	95078	104479		231	15994	136	95	69	69	29949	40	352
11-5-12 15:23	170638	76600	93611	102656		216	15676	117	99	69	66	29948	39	350
11-5-12 15:28	171326	76939	97655	106400		258	15667	162	96	72	71	29949	39	353
11-5-12 15:33	171651	76325	94870	103272		232	15806	126	106	72	70	29948	39	353
11-5-12 15:38	172648	76692	93920	102970		244	15477	140	104	70	70	29949	38	351
11-5-12 15:43	173543	76837	96001	105817		238	15810	127	111	78	77	29948	39	353
11-5-12 15:48	173219	78074	93898	102889		257	15619	134	123	85	80	29948	39	352
11-5-12 15:53	173335	77486	94004	103977		205	15590	116	89	69	69	29949	39	354
11-5-12 15:58	174072	77442	94395	103602		234	15751	127	107	75	75	29948	39	355
11-5-12 16:03	173856	77902	94691	103618		251	15703	129	122	76	76	29949	39	353
11-5-12 16:08	174938	77652	94945	104101		222	15703	132	90	57	0	29948	39	357
11-5-12 16:13	176005	78383	95243	104105		255	15736	143	112	77	77	29948	39	357
11-5-12 16:18	175752	78262	96014	104940		227	16084	135	92	63	63	29949	40	358
11-5-12 16:23	176688	78792	95169	104598		253	15776	155	98	60	59	29948	39	357
11-5-12 16:28	176782	78479	95660	104641		211	15820	119	92	70	70	29949	39	358
11-5-12 16:33	177334	78381	95890	104966		226	15490	121	105	77	74	29948	39	358
11-5-12 16:38	177983	78707	95841	106119	$ \setminus$	251	15733	142	109	82	82	29949	39	358
11-5-12 16:43	177360	79225	95766	104745	$^{\prime}$	255	15705	141	114	89	88	29948	39	360
)														

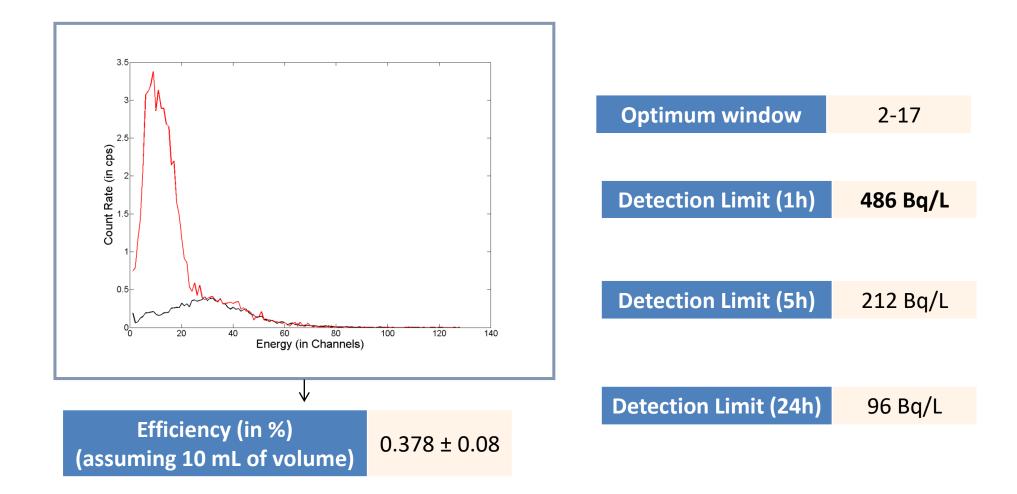
Measurement date

PMT counts


Coincidences

Counting and dead time

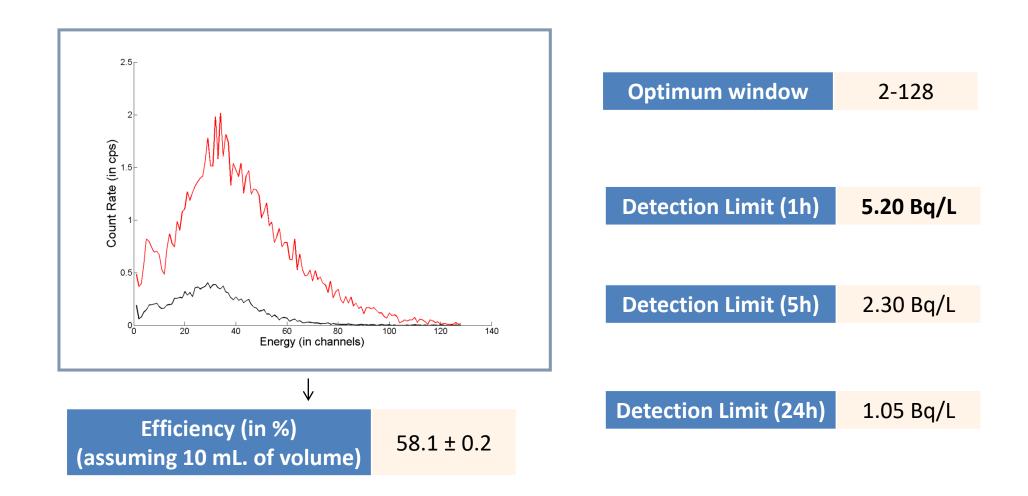
Calibration


- Background and ³H, ⁹⁰Sr/⁹⁰Y and ²⁴¹Am standards was measured in each sequence.
- Three replicate sequences were measured
- Counting time: 60 min

Background count rate (in cpm) 14.1(0.3)



WATER-RADD: ³H

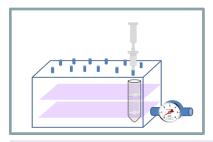


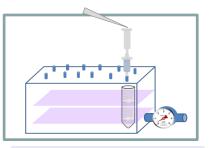
WATER-RADD: 90Sr/90Y

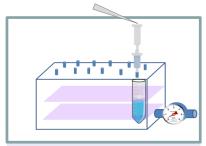
WATER-RADD: ²⁴¹Am

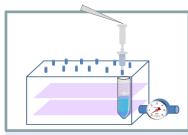
Radionuclide determinations with:

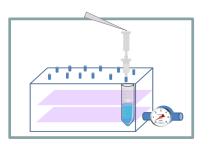
- **PSresin** (separation and detection)
- MASS (automated separation)
- WaterRadd (on-line detector)



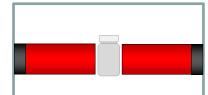


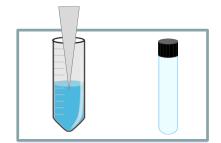

PSresin in practice


Connect to Chamber


Condition the column 2-5 mL

Add 10 -100 mL of sample (carrier)


Rinse 4 times with 2-5 mL of H_2O


Empty the column

Disconnect the column and place it in a scintillation vial

Measurement of in a scintillation detector

Prepare the ICP tubes for yield calculations

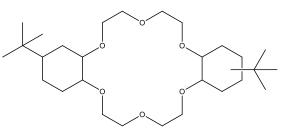
PSresin applications: Determination of ⁹⁰Sr/⁹⁰Y in milk in emergency situations

Objective: reduction of total **analysis time**.

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol Sample: 100 mL milk

Pretreatment:

- 1. Tricloroacetic acid
- 2. Oxalates precipitation



PSresin applications: Determination of ⁹⁰Sr/⁹⁰Y in milk in emergency situations

Objective: reduction of total analysis time.

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol

Sample: 100 mL milk

Pre-treatment:

- . Tricloroacetic acid
- . Oxalates precipitation
- . Redisolution in HNO₃6 M.

Cleaning: HNO_36 M and $LiNO_3 6$ M Carrier: 5 mg Sr²⁺

Type of milk	Pre-treatment	Column	Total Recovery
Type of milk	Recovery (%)	Recovery (%)	(%)
Cow (x7)	93 (3) (3%)	69 (2) (3%)	64 (3) (3%)
Sheep (x4)	94 (6) (6%)	64 (3) (3%)	60 (6) (10%)
Goat (x4)	96 (3) (3%)	67 (2) (3%)	67 (3) (3%)
Semi-skimmed	87	72	62
Skimmed	90	71	64
Powder (x2)	95 (1) (1%)	68.3(0.5) (1%)	65 (1) (2%)
Pasteurized	95	68	65
Reference material (x3)	91 (2) (3%)	78(2) (2%)	72 (2) (2%)
Total samples	93 (4) (4%)	70(4) (6%)	65 (5) (7%)

PSresin applications: Determination of ⁹⁰Sr/⁹⁰Y in milk in emergency situations

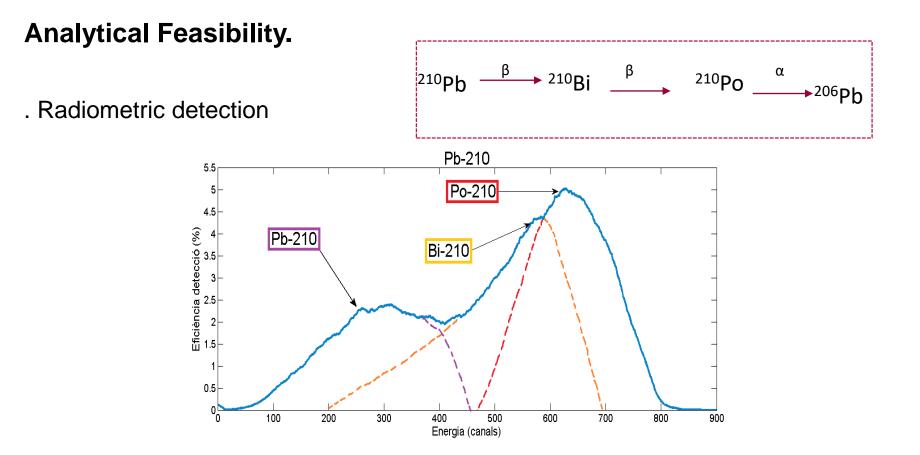
	Type of milk	Activity ⁸⁹ Sr (Bq/L)	Activity ⁹⁰ Sr (Bq/L)	Ratio ⁸⁹ Sr/ ⁹⁰ Sr	Relative bias (⁸⁹ Sr + ⁹⁰ Sr) (%)
M3	Cow/whole/UHT	-	27	0:1	-2.2 (1.9*)
M4	Cow/whole/UHT	15	-	1:0	6.6 (3.0*)
M5	Cow/whole/UHT	27	27	1:1	-1.9
M8	Cow/semi- skimmed/UHT	27	27	1:1	4.5
M9	Cow/skimmed/UHT	27	27	1:1	6.1
M11	Cow/whole/powder	27	27	1:1	1.7
M12	Cow/whole/pasteurized	27	27	1:1	2.6
M13	Goat/whole/raw	27	27	1:1	-1.9
M15	Sheep/semi- skimmed/UHT	27	27	1:1	7.0
M19	Goat/semi- skimmed/UHT	27	27	1:1	5.2

PSresin applications: Determination of ⁹⁰Sr/⁹⁰Y in milk in emergency situations

Objective: reduction of total **analysis time**.

	Type of milk	Activity ⁸⁹ Sr (Bq/L)	Activity ⁹⁰ Sr (Bq/L)	Ratio ⁸⁹ Sr/ ⁹⁰ Sr	Relative bias (⁸⁹ Sr + ⁹⁰ Sr) (%)
M6	Cow/whole/UHT	27	13.5	2:1	1.6
M15	Sheep/semi- skimmed/UHT	27	13.5	2:1	20.2
M19	Goat/semi- skimmed/UHT	27	13.5	2:1	6.5
M7	Cow/whole/UHT	125	13.5	10:1	-4.1
M17	Sheep/semi- skimmed/UHT	125	13.5	10:1	-3.9
M21	Goat/semi- skimmed/UHT	125	13.5	10:1	-4.1

PSresin applications: Determination of ⁹⁰Sr/⁹⁰Y in WATER


Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol Separation conditions: LiNO₃6 M (5 mL) Sample volume: 10 mL Cleaning: LiNO₃ 6 M (4*5 mL) Carrier: 100 μ g Sr²⁺

- **Recovery:** 100 %
- Det. Eff. (1-1024): 84(2)%
- Det. Eff. (300-617): 69.0(0.3)%
- Bkg) (300-617): 0.47 cpm
- MDA) (10 mL, 5H): 0.46 Bq L⁻¹

	Act (dpm)	Act calc (dpm)	Error) (%)
Drinking	8.02	8.18	1.94
Drinking water	7.77	7.66	-1.44
Waler	7.66	7.54	-1.51
	7.88	8.06	2.29
Sea Water	8.00	7.80	-2.56
	7.70	8.01	4.09
	7.86	7.84	-0.28
River Water	7.75	7.60	-1.94
	7.77	7.72	-0.61

PSresin applications: Determination of ²¹⁰Pb in BRONZE SCULPTURES

Expected Total detection efficiency ²¹⁰Pb+ ²¹⁰Bi+²¹⁰Po: 220 % after 2 years

PSresin applications: Determination of ²¹⁰Pb in BRONZE SCULPTURES

Analytical Feasibility.

. Minimum amount of sample.

Equations:

$$L_{D} = 2,71 \pm 4,65\sqrt{\mu_{B}}$$

$$Act_{0} = \frac{L_{D}/t}{Eff} \cdot 100$$

$$M_{bronze} = \frac{Act_{0} \cdot 100 \cdot 100}{C_{Pb} \cdot Act_{Pb} \cdot Ret_{Pb}}$$

$$\mu_{B} = CPM \cdot t$$

Worst

Condicions

Composition Pb: 1 %

Activity Pb: 10 dpm/ g_{Pb}

•

٠

Parameters:

- Blank: 1,08 CPM
- Composition Pb: 1 12 %
- Activity Pb: 10 110 dpm/g_{Pb}
- Retention Pb: 80,6 %

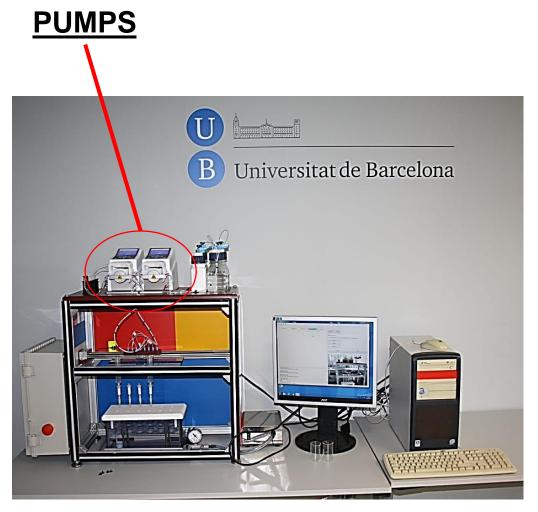
PSresin applications: Determination of ²¹⁰Pb in BRONZE SCULPTURES

Analytical Feasibility.

. Minimum amount of sample.

Composition Pb: 1 % Activity Pb: 10 dpm/g_{Pb}

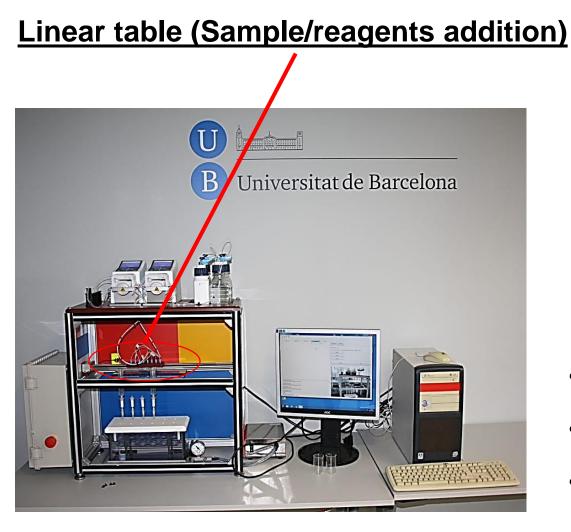
	²¹⁰ Pb	²¹⁰ Pb / ²¹⁰ Bi	²¹⁰ Pb / ²¹⁰ Bi / ²¹⁰ Po
Parameters	time 0 days	time 35 days	time 2 years
Detection EFF (%)	46,5 %	136 %	222,35 %
200 min	9,49 g	3,23 g	1,98 g
1 g	11,6 days	1,4 days	12,7 hours
0,5 g	46,5 days	5 <i>,</i> 5 days	2 days


- Automated separation using SPE cartridges (with PSresin)
- Simple design
- Coupled to vacuum box
- Controlled by computer

Easy handling of the samples

Similar set-up compared to manual separation

UNIVERSITAT DE BARCELONA



- 2 Peristaltic pumps (samples and reagents)
- Four independent channels in each pump
- Controlled by computer
- Flow: 0.5 to 4 ml min⁻¹



UNIVERSITAT DE

BARCELONA

- Movement in one axis
- 8 tubes (4 samples + 4 reagents)
- 4 adding positions (one for each PSresin)

UNIVERSITAT DE BARCELONA

- 12 position vacuum box
- 4 fixed positions

Position (1-4)	Reagent (1-8)	Volume (ml)	Flow (ml/min)	Pause (s)	
1 1	5	2	2	HF 0,1M / HNO3 0,1M	Add process Remo
2 2	5	2	2	HF 0,1M / HNO3 0,1M	
3 3	5	2	2	HF 0,1M / HNO3 0,1M	Selected list:
4 4	5	2	2	HF 0,1M / HNO3 0,1M	C:/ub/20180313-F
5 1	5	2	2	HF 0,1M / HNO3 0,1M	New list
6 2	5	2	2	HF 0,1M / HNO3 0,1M	Load list
7 3	5	2	2	HF 0,1M / HNO3 0,1M	
8 4	5	2	2	HF 0,1M / HNO3 0,1M	Save list
9 1	5	2	2	HF 0,1M / HNO3 CAM	Executa
10 2	5	2	2	HF 0,1M / HNO3 0,1M	LACCOL
11 3	5	2	2	HF 0,1M / HNO3 0,1M	1
12 4	5	2	2	HF 0,1M / HNO3 0,1M	- Barbar
13 1	7	2	2	WATER	
14 2	7	2	2	WATER	
15 3	7	2	2	WATER	
16 4	7	2	2	WATER	

- Define sequential process
- Actions: position (1-4); reagent (1-8); volume; flow
- Possibility to save/load protocols

UNIVERSITAT DE BARCELONA

APPLICATION 99TC DETERMINATION

SEPARATION WITH PSRESIN

- 1. Conditioning: 2 mL HCl 0.1M
- 2. Sample loading: 10 mL
- 3. 1st cleaning: 2 mL HF 0.1M/HNO₃ 0.1M
- 4. 2^{nd} cleaning: 2 mL HF 0.1M/HNO₃ 0.1M
- 5. 3^{rd} cleaning: 2 mL HF 0.1M/HNO₃ 0.1M^{*}
- 6. 4^{th} cleaning : 2 mL H₂O

CALIBRATION

10mL containing 240 dpm of ⁹⁹Tc, 1 mg or rhenium in HCI 0.1M

	Manual [%]	Automatic [%]
Yield	Quantitative (>98.8%)	Quantitative (>99.8%)
SQP(E)	802(8)	795(5)
Detection efficiency [%]	85.3(1.3)	88.2(1.3)

SAMPLES

Treatment:

- H_2O_2 at 90°C for 60 minutes.
- HCI until 0.1M.

Samples:

- River water (50 mL, 16 Bq/L)
- Sea water (50 mL, 16 Bq/L)

UNIVERSITAT DE BARCELONA

SAMPLES

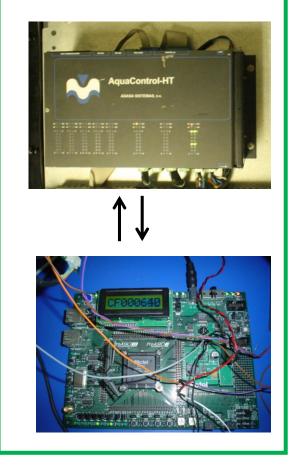
River water (50 mL, 16 Bq/L)

	Activity measured [Bq/Kg]		Deviation [%]		
River water sample	Activity [Bq/Kg]	Manual	Automated	Manual	Automated
1 st replicate	18.2	16.9	18.6	-7.3	2.1
2 nd replicate	16.8	17.0	16.8	1.2	0.1
3 rd replicate	18.0	18.3	17.7	1.7	-1.5
Mean				-1.5(5.1)	0.2(1.8)

Sea water (50 mL, 16 Bq/L)

		Activity meas	sured [Bq/Kg]	Deviat	ion [%]
Sea water sample	Activity [Bq/Kg]	Manual	Automated	Manual	Automated
1 st replicate	17.5	17.4	17.6	-0.8	0.6
2 nd replicate	17.4	17.2	18.1	-1.2	4.0
3 rd replicate	18.9	18.0	17.7	-5.0	-6.4
Mean				-2.4 (2.3)	-0.6 (5.3)

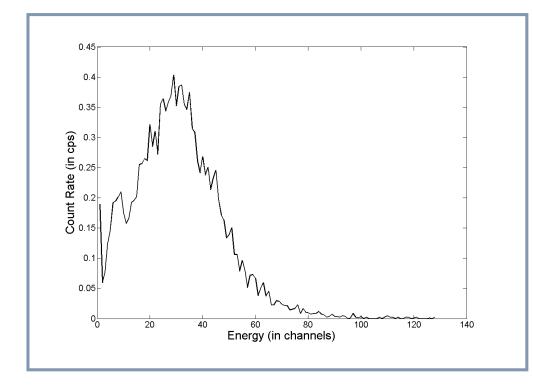
USER LOCATION -



- Number of periods per sample
- •Counting time of each period
- Calibration and Cleaning frequency
 - Communication frequency

- Counting times
- Number of Counts
 - Spectrum

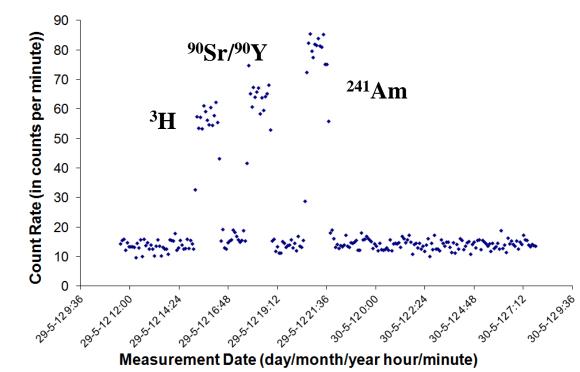
DETECTOR



• In the test performed, data was send each hour and a each subperiod was of 5 minutes

Applications: Continuous monitoring

WATER-RADD: background

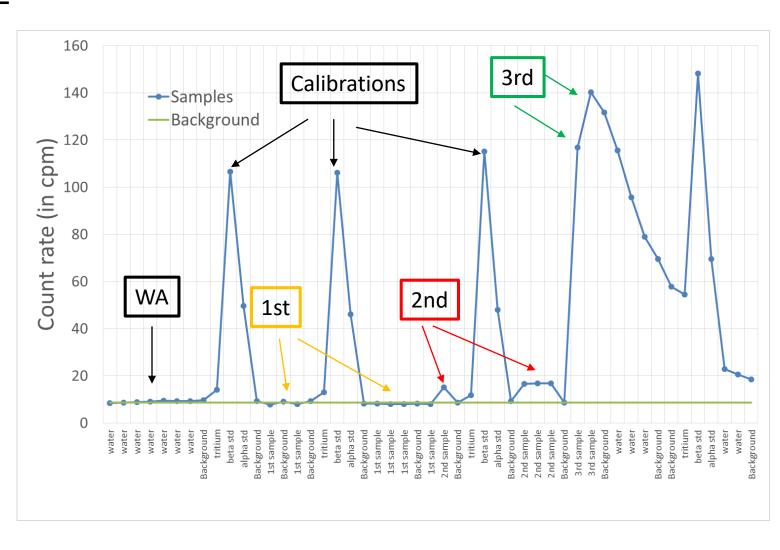

	Count rate (cpm)
1 st sequence (n=5)	14.41 ± 0.94
2 ^{on} sequence (n=6)	13.90 ± 0.54
3 th sequence (n=7)	13.98 ± 0.54

UNIVERSITAT DE BARCELONA

Calibration

- Background and ³H, ⁹⁰Sr/⁹⁰Y and ²⁴¹Am standards was measured in each sequence.
- Three replicate sequences were measured
- Counting time: 60 min

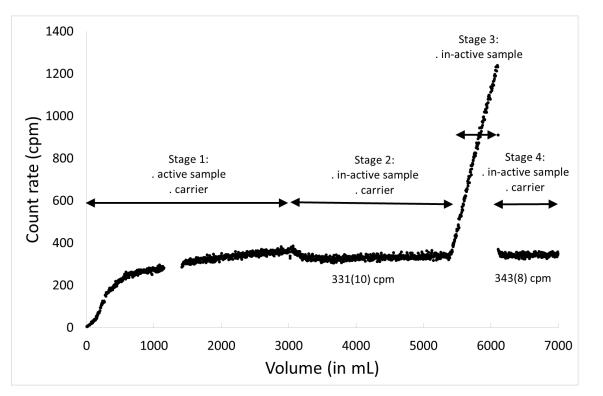
Background count rate (in cpm)
14.1(0.3)

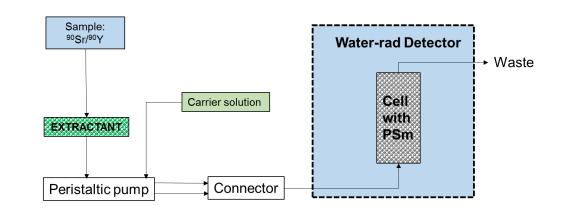

	Efficiency (in %)	Detection Limit (1h)
³ Н	0.38(0.08)	486 Bq/L
⁹⁰ Sr/ ⁹⁰ Y	142(6)	3.9 Bq/L
²⁴¹ Am	58.1(0.2)	5.2 Bq/L

UNIVERSITAT DE BARCELONA

Analysis of hydraulic fracturing samples

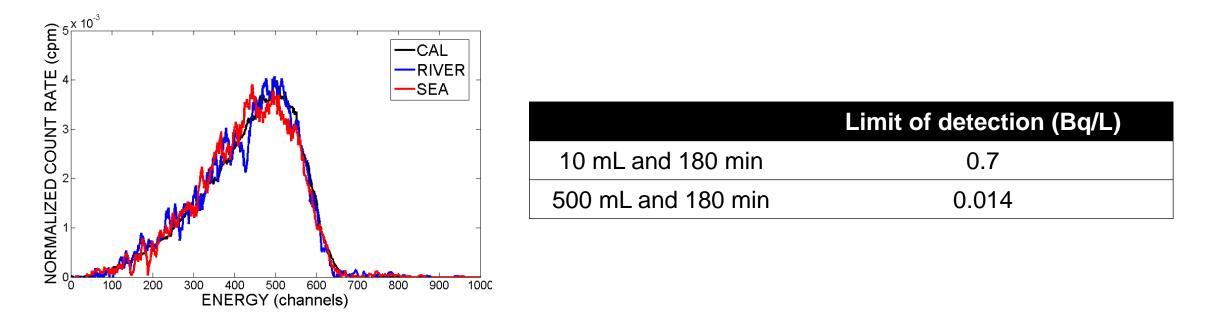
- 3 samples
- Counting time: 60 min
- Beta detection limit: 2.0 Bq/L
- Alfa detection limit: 2.1 Bq/L


		LS (Bq/Kg)	Water-radd (Bq/Kg)
1st sample	alpha	0.06	< 2.1
	beta	< 0.1	< 2.0
2nd sample	alpha	< 0.8	20
	beta	7.1	19
3rd sample	alpha	310	285
	beta	42	274



UNIVERSITATDE BARCELONA

Study of extractant performance


- ⁹⁰Sr/⁹⁰Y assay
- 150 hours experiment
- 4 different experimental set-up
- Counting time: 5 min

Automatic vs. Manual: Determination of ⁹⁹Tc in WATER samples

- Automated and manual separation present equivalent perfomances
- Automated separation with MASS and PSresin can lead to a increase of analysis productivity