TrisKem International

vUGM

part of the NPL vCARM conference

News Radiopharmacy and other on-going R&D S. Happel - 24/11/2020

Geochemistry and Metals Separation

R&D TrisKem International

- R&D, TechSupport & QC team: 9 persons
 - 3 radiochemistry PhD, 2 organic chemistry PhD, 4 technicians
- Two R&D labs:
 - Synthesis Lab (new resins and extractants)
 - Incl. grafted resins (silica or polymers), macrocycles,...
 - Extractants
 - Application Lab
 - Preparation of extraction chromatographic resins
 - Resin characterisation and method development
- Counting equipment:
 - ICP-MS, IC, TOC, TGA, IR, moisture analyzer, surface area analyser, particle size and shape analyser, pycnometer
 - Production and packing lab with four 20L reactors
- No handling of radioactivity => R&D cooperation
 - Resin and method development "cold" => R&D partner

R&D interest in Radiopharmacy

- Radionuclide production
 - Separation of radionuclides from irradiated targets
 - » Diagnostics: Zr-89, Cu-64, Ga-68, Ge-68, Ti-44/5, Tc-99m, Sc-43/4,...
 - ZR Resin, CU Resin, TK200 Resin, TK400, TK201, TK202,...
 - » Therapy: alpha emitters, Lu-177, Tb-161 Cu-67, Sn-117m, Sc-47,...
 - TK400, TK200, TBP Resin, CU Resin, TK211/2/3, TK221,...
- Quality control
 - DGA sheets (functionalized TLC, Ra-223, Ga-68, Pb-212,....
 - => CVUT Prague)
 - Cartridge based methods
- Decontamination of effluents
- Purification of generator eluates => under development

Zr-89 separation

- ZR Resin
 - Hydroxamate based resin => different from Holland publication!
 - Standard for Zr separation from Y targets
 - Ready to use / no activation
 - Facile Zr elution (avoid 1M oxalic acid)
- Zr-89 production via (p,n) reaction from ^{nat}Y targets
 - High Zr/Y selectivity necessary
 - Alternative e.g. TBP Resin (=> Graves et al.)
- Application for other separations: Ti/Sc, Ga/Zn, Ge/Ga

Zr-89 separation on ZR Resin

- No activation with acetonitrile!
- Load preferably from 2M HCl
- Rinsing described by Holland may be employed (2M HCl / water)
- Clean Fe removal

- Quantitative Zr elution in 1.5 2 mL ≥ 0.05M oxalic acid
- Oxalic acid conc. may be higher (e.g. 1M) => smaller elution volume
- For ≤ 100mg Y often 0.3mL ZR Resin

Zr-89 separation on TBP Resin

- Method published by Graves et al.
- 400mg Y foils irradiated at 14 MeV (50 μA)
- Dissolution in 10 mL conc. HCl
- Separation on 220 mg TBP Resin
- Load from 9.6M HCl, rinse with 20 mL 9.6M HCl
- Zr elution with 1 mL 0.1M HCl
- Zr yield: 89 \pm 3%, Y decontamination: 1.5 x 10⁵
- Zr elution should also be possible with oxalate, citrate, phosphate...
- Other applications of TBP Resin:
 - Sc isotope production from Ca targets (=> presentation EANM'18, Polatom)
 - Sn-117m from Cd targets

Nuclear Medicine and Biology Volumes 64–65, September–October 2018, Pages 1-7

Evaluation of a chloride-based ⁸⁹Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin

Stephen A. Graves ^a, Christopher Kutyreff ^b, Kendall E. Barrett ^b, Reinier Hernandez ^c, Paul A. Ellison ^b, Steffen Happel ^d, Eduardo Aluicio-Sarduy ^b, Todd E. Barnhart ^b, Robert J. Nickles ^b, Jonathan W. Engle ^b A ⊠

Show more

https://doi.org/10.1016/j.nucmedbio.2018.06.003

Get rights and content

Use of TK400 for Fe/Nb removal

- On-going work following questions about Fe removal
 - On TBP only: Fe and Nb follow Zr
- Removal of Fe & Nb upfront possible using TK400 Resin
- Test with stacked 2 mL TK400/TBP cartridges
 - Load and Rinse: TK400 stacked above TBP
 - Elution: splitting of cartridges and separate elution
 - TBP => ZR
 - TK400 = > Fe & Nb
- Best results:
 - TK400 run at 9M HCl => no Zr retention
 - − Adjustment of eluate to \ge 10M HCl
 - Loading of adjusted eluate onto TBP for Zr purification 7

TK400 Resin

- Long chained alcohol
- Retention only at high HCl concentration, elution in low HCl, water,...
- Main application: Pa separation (Pa-231 determination by MS/Pa-230 for medical use)
 - NPL (no selectivity for actinides, Ac, Ra, Pb,...=> Pa-230 purif.)
- Other applications:
 - Also retains Mo, Fe, Ga, Po (=> SR Resin!)
 - Nb separation from Zr possible (Nb-90)
 - Under testing for At separation

233Pa

Ti-44/Sc-44

Separation of ⁴⁴Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of ⁴⁴Ti/⁴⁴Sc generator system

V. Radchenko, C.A.L. Meyer, J.W. Engle, C.M. Naranjo, G.A. Unc, T. Mastren, M. Brugh, E.R. Birnbaum, K.D. John, F.M. Nortier, M.E. Fassbender*

Fig. 3. HCl concentration dependency of K_d for ${}^{44}\text{Ti}/{}^{46}\text{Sc}$ on ZR hydroxamate resin. Fig. 5. ${}^{44}\text{Ti}/{}^{46}\text{Sc}$ elution profile using ZR hydroxamate resin with a load of 4 g of scandium.

Ti-44 production

- 4g irradiated Sc
- 5 mL Zr Resin
- Ti-44 yield >95%
- 65.2 MBq Ti-44
- D_f(Sc): 10⁵

Ti-45 => K. Olguin presentation

Use of ZR Resin as support in Ti-44/Sc-44 generators

Fig. 1. Schematic concept of a forward/reverse flow radionuclide generator.

- Direct (1 mL ZR) and reverse elution (2 mL ZR)
- 65 column volumes tested up until publication
- High Sc yields, max. Ti-44 breakthrough: 4.1·10⁻⁴%
- Obtained Sc gave labelling yields > 94%
- Generator been set-up at BNL/SBU => Poster S. Houclier ISRS 2019

Ge-68 separation from GaNi or GaCo

- Loading from HNO₃, HCl or H₂SO₄
 - Target dissolution in HNO₃ or H₂SO₄
 often preferred => GeCl₄ volatile
- On-going: Cold test on >5g GaNi
- First cycle on ZR Resin
 - 2 mL ZR Resin cartridge
 - Load/rinse from 5M H_2SO_4
 - High Ge retention/purification from Ga, Ni & Co
 - Elution: 0.1M citric acid (pH 3)
 - − Preferably at \leq 1 mL/min
- Second cycle on ZR Resin
 - Preferably 1 mL cartridge
 - Alternative 2 mL cartridge
 - Adjustment of eluate to 5M H₂SO₄
 - Load of adjusted eluate through ZR

- Rinse with 5M H_2SO_4
- Elution with 0.1M citric acid (pH 3)
- Preferably at $\leq 1 \text{ mL/min}$
- Conversion step (citric acid to HCl):
 - Acidification to 9M HCl, load onto Guard Resin
 - Alternatives: Prefilter or TK400
 - Advantage Guard Resin: further Ga removal
 - Advantage Prefilter/TK400: works at 6M HCl - but no selectivity for Ge over Ga
 - Rinse with 9M HCl
 - Elution with 0.05M HCl => pH control!
- Overall very high Df & chemical yield

Ga-68(/Ga-67) separation from Zn targets

- ZR Resin
 - Loading possible from:
 - dilute HNO₃ (liquid targets)
 - > 6M HCl (solid targets)
 - Rinse under loading condition
 - Ga separation on ZR Resin
 - Elution with ~1.5M HCl

- Ga conversion step on TK200
 - TK200 load from 1.5M HCl
 - Rinse with 1.5M HCl
 - Better pH control of eluate via rinse with NaCl/HCl before elution=> Gagnon et al.
 - Elution in 2 3 BV water

\Rightarrow New IAEA TechDoc:

https://www-pub.iaea.org/books/IAEABooks/13484/Gallium-68-Cyclotron-Production

Cyclotron production of Ga-68

Rodnick et al. EINMMI Radiopharmacy and Chemistry (2020) 5:25 https://doi.org/10.1186/s41181-020-00106-9 EJNMMI Radiopharmacy and Chemistry

RESEARCH ARTICLE

heck fo

Cyclotron-based production of ⁶⁸Ga, [⁶⁸Ga]GaCl₃, and [⁶⁸Ga]Ga-PSMA-11 from a liquid target

Melissa E. Rodnick¹, Carina Sollert², Daniela Starl³, Mara Clark¹, Andrew Katsifis³, Brian G. Hockley¹, D. Christian Parr², Jens Frigell², Bradford D. Henderson¹, Monica Abghari-Gerst¹, Morand R. Piert¹, Michael J. Fulham⁴, Stefan Eberf⁵, Katherine Gagnon² and Peter J. H. Scott^{1*}

Table 1 High level schemes of [68Ga]GaCl₃ purifications

	Scheme A*	Scheme B
1 ZR Load	< 0.1 M HNO ₃	
2 ZR Wash	15 mL 0.1 M HNO	\mathcal{D}_3
3 ZR Elution / Trapping on TK200	5–6 mL ~ 1.75 M	HCI
4 TK Wash	-	3.5 mL 2.0 M NaCl in 0.13 M HCl
5 TK Elution	H ₂ O	1–2 mL H_2O followed by dilute HCl to formulate

- J. Kumlin et al. (preprint):
 - ZR, LN & TK200 for solid targets

ORIGINAL RESEARCH

Multi-Curie Production of Gallium-68 on a Biomedical Cyclotron and Automated Radiolabelling of PSMA-11 and DOTATATE

Helge Thisgaard, Joel Kumlin, Niels Langkjær, Jansen Chua, Brian Hook, Mikael Jensen, Amir Kassaian, Stefan Zeisler, Sogol Borjian, Michael Cross, Paul Schaffer, Johan Hygum Dam

DOI: 10.21203/rs.3.rs-70698/v1 🚦 Download PDF

- High Ga-68 activities
- ARTMS/Odense: 10 Ci production: <u>https://physicsworld.com/a/cyclotron-based-gallium-68-generator-breaks-production-records/</u>
- W. Tieu et al.: Use of single TK400 cartridge for solid Zn targets

Nuclear Medicine and Biology Volumes 74–75, July–August 2019, Pages 12-18

Rapid and automated production of [⁶⁸Ga]gallium chloride and [⁶⁸Ga]Ga-DOTA-TATE on a medical cyclotron

William Tieu ^a A ⇔, Courtney A, Hollis ^a, Kevin K.W. Kuan ^a, Prab Takhar ^a, Mick Stuckings ^b, Nigel Spooner ^b, ^c, Mario Malinconico ^d

*Process as reported previously (Nair et al. 2017)

Other examples for separations on TK200 (TOPO based)

- Zn/Cu separation. Elution study, ICP-MS measurement
- Pt separation from Ir

٠

• Pt/Ir separation. Elution study, ICP-MS measurement

Zn separation from Cu

- Zn-65 separation. Data kindly provided by Fedor Zhuravlev, DTU
 - Other systems under testing
 - Radioanalysis: actinide separation
 - Tri and tetravalents generaly more difficult to elute (Sc,...)

Cu-61/4 separation on TK201

- Cu-64 separation from solid Ni targets on TK201:
 - Load and rinse at 6M HCl => Ni removal => recovery/recycling
 - Co elution with 4 5M HCl
 - Gagnon et al. use of NaCl/HCl for better pH control of eluate
 - Cu elution with 0.5M HCl => Fe and Zn remain retained
 - Preferred alternative: Use of TBP (or TK400) upfront for Fe/Ga removal => allows for Cu elution in 0.05M HCl

Svedjehed et al. E.NMMI Radiopharmacy and Chemistry (2020) 5:21 https://doi.org/10.1186/s41181-020-00108-7

EJNMMI Radiopharmacy and Chemistry

RESEARCH ARTICLE

Automated, cassette-based isolation and formulation of high-purity [⁶¹Cu]CuCl₂ from solid Ni targets

Johan Svedjehed¹, Christopher J. Kutyreff², Jonathan W. Engle^{2,3} and Katherine Gagnon^{1*}

Open Access

Cu-67 at BNL (DeGraffenreid et al.)

Purification of ⁶⁷Cu and Recovery of its Irradiated Zn Target Poster A.J. DeGraffenreid^a , R. Nidzyn^a, B. Jenkins^a, D.E. Wycoff^b, T.E. Phelps^b, A. Goldberg^a, D.G. Medvedev^a, S.S. Jurisson^b, Poster °Brookhaven National Laboratory, C-AD/MIRP—Upton, NY (USA) ISRS 2017 °University of Missouri, Department of Chemistry—Columbia, MO (USA) No (USA)

- 13.7g Zn metal dissolved to give 312 mg ZnCl₂/mL solution at pH 2
- Loading of 60,6 mL => 18.9g ZnCL2 onto
 2.4g CU Resin column => 8 mL
- Rinse with 80 mL pH2 HCl
- Elution in 2 x 20 mL 6M HCl
- Evaporation to dryness
- Chemical yield ~100%
- Single column D_f for Zn ~10 000
 - Additional removal indicated
- Ideally further Zn and Co removal
- Original suggestion: AIX

Cu Resin							
		Recovery (%)					
Nuclide	EOB Activity (mCi ± 1σ)	Load w/ Quant. Transfer	pH 2 HCl Rinse	Acid #1	Acid #2		
⁶⁴ Cu	4700 ± 200	ND	ND	102	ND		
⁶⁵ Zn	41.0 ± 0.8	103	ND	0.04	ND		
⁵⁸ Co	63 ± 1	104	0.04	0.1	0.01		

- Produced 143 mCi ⁶⁷Cu
- Quantitative recovery of radiocopper
- >99.5% radionuclidic purity—single column
- ICP-OES: 132.9 µg Cu and 1.3 mg Zn
- Anion exchange column still needed to remove trace Zn
- ➤ Specific activity ⁸⁷Cu at EOB: 1.07 mCi/µg

Cu Resin

Robust separation that could shorten the overall processing time to separate co-produced radionuclides and large quantities of Zn from radiocopper Cation and anion exchange columns still needed to suitably purify radiocopper

Alternatives to AIX:

- TK201: prefered option. Cu elution from CU Resin with 6M HCl directly onto TK201, followed by Cu elution from TK201 in dilute acid
- TK200: Cu eluted from CU Resin in 1 2M HCl, direct load through TK200 (Zn retained, Cu passes)

On-going developments radiolanthanides (nca Lu-177, Tb-161)

- Separation of nca Lu-177 from Yb-176 targets (500 2000 mg)
- Partial simplification via sequential separation steps
 - 'Sequential separations' approach also applicable e.g. to Tb separation
- New resins: TK211/2/3
 - On-bead mix of different extractants for improved selectivity
 - Higher extractant load
 - Small amount of long-chained alcohol and use of inert support containing aromatic groups
 => aim: improved radiolysis stability
 - 20 50 μm beads
 - Originally developped as 15μm beads => too small for large scale separations
 - Resins also applicable to Horwitz method
 - TK212 & TK221 instead of LN2 and DGA
- Prepacked PP columns under development
 - 29 mL, 53 mL, 150 mL, 375 mL and 750 mL
 - With CoA
- Upscale to 1g and 2g Yb targets under finalisation

Simplified method for Lu separation from 500 mg Yb – TK211/2 & TK221

• Partial simplification via sequential separation step (direct load from TK212 onto TK211 for polish)

Lu separation form 500 mg Yb - **TK212**/TK221/TK212/TK211

- Large tailing due to high Yb content
- Improved separation through use of 1.25M HNO_3 / 10% EtOH (v/v) instead of 1.3M
- Additional benefit from use of EtOH => improved radiolysis stability
- Online separation: switch at start of 'Lu fraction' => ideally radiation detector driven
- General aim: ~95% Lu recovery, ~80% Yb removal

Lu separation form 500 mg Yb -TK212/TK221/**TK212**/TK211

- 2^{nd} separation step on smaller TK212 (53 mL) after TK221 for conversion from high HNO₃ to dilute HCl => 5g TK221
- Separation with e.g. 1.25M HNO₃ (with or without 10% EtOH)
- Generally aim: Lu >90% recovery, ~99% Yb removal
- Direct loading of obtained Lu fraction onto TK211 Resin
 - Alternatively TK221/TK212 according to Horwitz et al.

Lu separation form 500 mg Yb -TK212/TK221/TK212/**TK211**

- Overall Lu recovery of process in the order of 85% => higher if more Yb allowed in final Lu
- Low remaining Yb
- Flow rates may still be optimized
- Final step: concentration/conversion to \leq 0.05M HCl on TK221, nitrate removal via A8

Simplified method for Tb separation from 500 mg Gd – TK211/2 & TK221

Tb separation from 500 mg Gd targets

- « Sequential separation » TK212 => TK211
- Initial separation on TK212 (150 mL column)
- Fine tuning ongoing (e.g. adjustment of eluents to 10% EtOH)
- Separation easier than Lu/Yb
- Polishing via direct load onto TK211 (29 mL)

Tb polish on TK211

- Gd breaktrough during load & rinse with 0.5M HNO₃
- Method optimisation on-going => yields and purity very high
- Alternatively: Tb elution with 1M HNO₃

=> smaller elution volume / better Tb retention on TK221

- Conversion to dilute HCl via TK221, A8 for nitrate removal
- Next steps => Upscale to 1g and 2g of Gd

On-going developments Lu-177 – new TK221 Resin

- DGA well suited for 'conversion' and purification (Ca, Al, Fe,... removal)
 - Convert Lu from high nitric acid to dilute HCl
- Elution of heavy lanthanides in 0.05M HCl needs elevated volumes
 - smaller volume prefered => higher activity concentration
- Optimisation of DGA Resin => new TK221 Resin
 - Lu eluted in smaller volume
 - Radioanalytical applications: higher U retention compared to DGA

Other ongoing R&D

- TK202 Resin
 - Based on Polyethylene Glycol(PEG) grafted on inert support
 - Presentation Izabela Cieszykowska

- Poster presentation at ISTR2019, Vienna, 28/10/19 01/11/19
 - Tc recovery > 90% for 6 8g Mo per g of TK202
 - Tc recovery > 80% for 12g Mo per g of TK202
- On-going tests:
 - Tc separation from larger Mo targets
 - Use of carbonate rinse for better pH control of eluate
 - Use of an aluminium oxide 'guard column' for trace Mo removal
 - Decommissioning => Tc determination in decommissioning samples after alcaline fusion => presentation A. Bombard
- SE Resin
 - Functional group covalently bound onto polymer support
 - Piazselenol chemistry (retention as Se(IV))
 - Load from e.g. 2M HCl, elution with 0.1M NaOH/0.1 H_2O_2
 - Se-72 separation and generator support, Se-79, Se isotope ratios
 - => First beta testing on-going

Some other on-going projects

- Decontamination
 - PAN based resins,...
- Cs/Rb separation (TK300)
 - Beta testing on-going
 - Calixarene based
 - Probably 2 resins
- Ra Resin
 - Macrocycle based
 - Probably 2 resins
- Li Resin
 - Macrocycle based
- Rapid tests
 - Test sticks => Uni Southampton
 - DGA Sheets (2D TLC)
 - Extractive membranes

- At separation (TK400,...)
- Range of PSm based resins
 - TK-ElScint (p.ex. TK-TcScint)
- DGT (Diffusive Gradients in Thin Films) => 'bio-availability'
- Functionalised polymers & silicates,...
 - e.g. DO-DGA, DE-DGA, macrocycles,...
- Microfluidics
- Improvement of radiolysis stability
- Other types of supports

- If any of these R&D topics are of interest we are always looking for research collaborations or common projects so please contact us! => <u>shappel@triskem.fr</u>
- In case you have developed a new product that might be of interest please get in touch to discuss
- Please never hesitate to contact us if you have any technical questions or facing the need to develop new separations

Thank you for your attention!

in

f

y