TrisKem International

An overview over some new extraction chromatographic resins and their application in radiopharmacy

Steffen Happel 12/06/2021

Overview

- TrisKem International
 - <u>Products</u>
 - <u>R&D</u>
 - <u>Networks</u>
- <u>Extraction Chromatography</u>
- Domains of application
- <u>ZR Resin (e.g. Zr-89, Ga-68, Ge-68, Ti-44/5)</u>
- <u>TK200 Resin (Ga-68, Zn/Cu, Pt/Ir,</u> <u>Sc/Ca)</u>
- <u>TK201 Resin (Cu-64 from solid Ni</u> <u>targets)</u>
- <u>CU Resin (Cu from Zn and liquid Ni</u> <u>targets)</u>

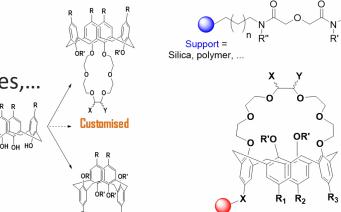
- Lanthanide separation (Lu-177, Tb-161)
- <u>TK221 (LN, Ac purification)</u>
- TBP Resin (e.g. Zr-89, Sc, Ga)
- <u>TK400 Resin (Pa, Nb, Ga)</u>
- <u>CL Resin (Ag, Pa, I removal)</u>
- <u>TK202 (Tc/Mo)</u>
- DGA Sheets
- PAN based resins
- <u>TK-TcScint</u>
- On-going developments

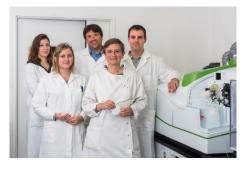
TrisKem International

- Based in Rennes (France)
- Independent company since 02/07
 - Formerly part of Eichrom Europe
 - ISO 9001 since 2007
- Staff : 20
- R&D, QC and TechSupport group:
 - 3 RadChem PhD, 2 OrgChem PhD, 5 Technicians
- R&D: Development of new resins, techniques and applications
- Several domains

TrisKem International

- Production and trade of selective resins and accessories
 - Mainly extraction chromatographic resins
 - PAN embedded inorganic compounds
 - Functionalized polymers and silicates
 - Analytical and chelating ion exchange resins
- Distribution (Europe):
 - LSC cocktails et al. (Meridian)
 - PEEK columns
 - Raddec Pyrolyser (H-3 & C-14)
 - ICP & AAS standards (Labkings)
 - New: Radioactive standards (NPL)
 - Accessories (Zr crucibles, empty columns & cartridges, funnels, vacuum boxes,...)


ils for Liquid Scint



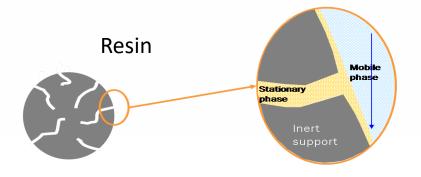
NDI

R&D TrisKem International

- Two R&D labs:
 - Synthesis Lab (new resins and extractants)
 - Incl. grafted resins (silica or polymers), macrocycles,...
 - Application Lab
 - Preparation of extraction chromatographic resins
 - Resin characterisation and method development
- Equipment:
 - ICP-MS, IC, TOC, TGA, IR, moisture analyzer, surface area and pore size/volume analyser, particle size and shape analyser, pycnometer
 - Production and packing lab with four 20L reactors
- No handling of radioactivity => R&D cooperation
 - Resin and method development "cold" => R&D partner

Networks

- Isotope4Life / Atlanpole Biotherapies
 ID2 Santé
- Nucleopolis (energy & health)
- Prometia (hydrometallurgy)
- Several projects financed by the BPI
 - Radiopharmacy (PSPC CARAT Pb-212/LU-177)
 - Member of BPI Excellence
 - Lauréate Vague d'innovation BPI (C.L.I.P.S. 2020)



Extraction chromatography

Organic extractant impregnated onto inert support

- « Supported Solvent Extraction » / « Solvent Impregnated Resins »
- Distribution between two non-miscible phases
- High density of functional groups
- Fast kinetics/small volumes => rapid separations
- High variety of selectivities:
 - Pure extractants, synergetic mixtures, solid extractants in diluents
- Aim: selectivity for product, no selectivity for target material
- Combining several cartridges can allow obtaining better product quality
- Elution under 'soft' conditions in small volume => labeling/injection
- Bleeding might need to be adressed (Prefilter, AIX, CEX,...)

Products and applications

PRODUCTS+	APPLICATIONS*			
AC Resin	Mn, Ac/Ra, gross alpha			
CL Resin	Ag, Radioiodine removal, Pa, Cl, I			
CU Resin	Cu from Zn and liquid Ni targets (e.g. Cu-61/7)			
DGA Resin	Y, Sc-44/7, Ac-223/5/7, Co			
DGA Sheets	Quality control of Ra-223, Pb-212, Ac-225/Bi-213, Ge-68/Ga-68			
LN Resin Series	Lanthanide separations (Lu-177, Tb-161)			
Prefilter Resin	Organic impurities removal			
Guard Resin	Organic impurities removal			
RE Resin	Y			
SR Resin	Sr-82, Pb, Po			
TBP Resin	Zr-89, Sc, Sn-117m			
TEVA Resin	Тс			
TK100/1 Resin	Sr-82, Ra			
TK200 Resin	Ga-67/8, Zn, Pt, Pd			
TK201 Resin	Cu from solid Ni targets (e.g. Cu-64), Tc-99m, Re			
TK221 Resin	Lu, Tb, Ac purification			
TK211/2/3 Resins	Lanthanide separations (nca Lu-177, nca Tb-161)			
TK400 Resin	Pa, Ga-68, Nb, Mo, Po, Fe			
UTEVA Resin	Zr, Sc-44/7			
ZR Resin	Zr-89, Ga-67/8, Ge-68, Ti-44/5			
+Resin available world wi	de *main application in blue			

in orange

Coming soon: TK202 (Tc from Mo)

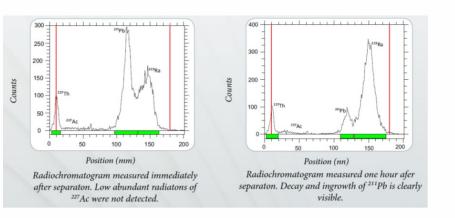
- Analytical
 - Radiochemistry
 - Environmental monitoring, bioassay, waste monitoring, decommissioning
 - Actinides, fission and activation products, NORM, methods/resins for DTMs, rapid methods,...
 - » TK100/1, TK200, TBP, CL Resin, TK201/2, TK300, TK-TcScint, Extractive discs,...
 - Mass spectrometry
 - Isotope ratio determination (universities, petrol industry,...)
 - Sr, Pb, U, actinides, Cu, Sn...
 - » Dating of geological samples :**TK200, TK400, TK300, ...**
 - » Food provenancing : **TK100,...**
 - » Nuclear forensics: TK200, TK400,...
 - » Biomedical (Cu),... => CU Resin,...

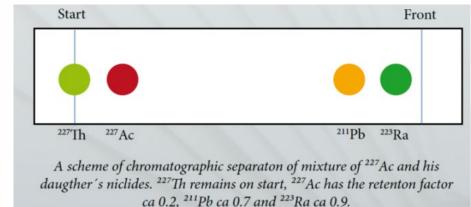
Expertise in Separation Chemistry

- Decommissioning/decontamination
 - Treatment of effluents / liquid wastes / environmental waters
 - Removal of radioactive contaminants & heavy metals (Cs, Sr, Ra, I...)
 - Inorganic compounds embedded into PAN matrix

CS Resins, MnO2-PAN more under development

- Extractionchromatographic resins
- Hydrometallurgy
 - Recycling of critical metals
 - Purification of leachates
 - Upscale of the production of extraction chromatographic resins




- Radiopharmacy/Nuclear Medicine
 - Radionuclide production

- Cooperation with cyclotrons & reactors (NL, RN producers,...)
- Equipment provider (targetry, synthesizer,...)
- Separation of radionuclides from irradiated targets
 - » Diagnostics: Zr-89, Cu-64, Ga-68, Ge-68, Ti-44/5, Tc-99m, Sc-43/4...
 - ZR Resin, CU Resin, TK200 Resin, TK400, TK201, TK202,...
 - » Therapy: alpha emitters, Lu-177, Cu-67, Sn-117m, Sc-47...
 - TK400, TK200, TBP Resin, CU Resin, TK211/2/3, TK221,...

- Radiopharmacy/nuclear medicine
 - Purification of generator eluates => under development
 - Decontamination of contaminated effluents => CL Resin,...
 - Quality control
 - Cartridge based methods
 - DGA sheets (functionalized TLC, Ra-223, Ga-68, Pb-212,.... => CVUT Prague)

Applications in RadPharma – new resins

Radiopharmacy

Environment

Geochemistry

Decommissioning

Separation of radionuclides for medical applications

- Rapid, highly specific separation techniques
- Separation of radionuclides from irradiated targets
- Quality control of radionuclides for medical use
- Post-generator purification
- Radioprotection and Radioanalysis
- Easily used in glove boxes or hot cells
- High active samples

BLUER CON

Our resins are increasingly finding application in the production and quality control of radionuclides (such as Cu-64/7, Ge-68, Ga-67/8, Sc-44/7, Zr-89, alpha emitters...) for medical use, and are employed by leading radionuclide manufacturers worldwide. Further to our range of highly selective resins TrisKem is now also offering a selective chromatography paper (DGA Sheets) for quality control of radionuclides and generator effluents (Ac-225, Pb-212, Ga-68...).

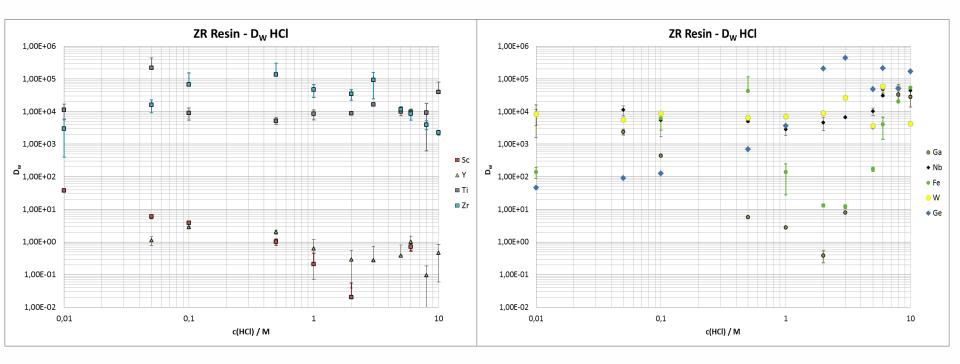
TrisKem International places a strong focus on the development of new resins and separation methods to meet your separation needs. If you'd like to receive more detailed information, or if you'd like to discuss a specific separation problem please contact us under : contact@triskem.fr

Products	Applications*			
CU Resin	Cu-61/7			
ZR Resin	Zr-89, Ga-67/8, Ge-68, Ti-44/5			
TBP Resin	Sn-117m, Zr-89, Actinides			
тк200	Ga-68, Actinides			
TK201 Resin	Cu-64			
TK221 Resin	Lanthanides separation and purification (e.g. Lu-177), Ac-225 purification, Actinides			
TK400 Resin	Pa-230/1, Nb-90, Ga-68			
DGA Sheets	Guality control of Re-223, Pb-212, Ac-225/Bi-213, Ge-68/Ge-68			
CL Resin	l removal from effluents, Ag, PGE, CI-36/I-129			
TK100 Resin	Sr-82			
TK101 Resin	Ra, Pb			
CS Resins	Cs, Rb			
Discs	Source preparation for alphaspectrometry			
MnOg-PAN	Ra-226/8			
Ra Nucfilms discs	Ra-226			
LSC consumables	Liquid Scintillation Counting			
Autodeposition kit	Source preparation for alphaspectrometry			
Pyrolyser, Pyrolyser Mini	Total tritium, C-14, Cl-36 and l-129			

*the main application is in blue

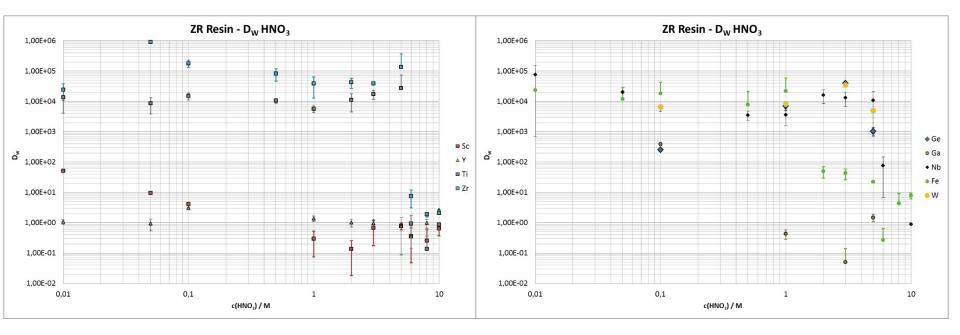
Our new developments - for information on all our products please visit our web site: www.triskem.com

TREGRAM INTERNATIONAL 3, Rue dec Champs Géore - 35170 Bruz - FRANCE Tel +33 (Dj2 99 05 00 09 - Fex +33 (Dj2 23 45 93 19 - www.bristem.com - emeil : contect@cristem.fr GAS au capital de 100.000 euros - SIFET 493 848 972 00029 - AFE20592 -VAT FRED 493 848 972 - EDRI FR433848972 in 😥 💩 🕇


ZR Resin

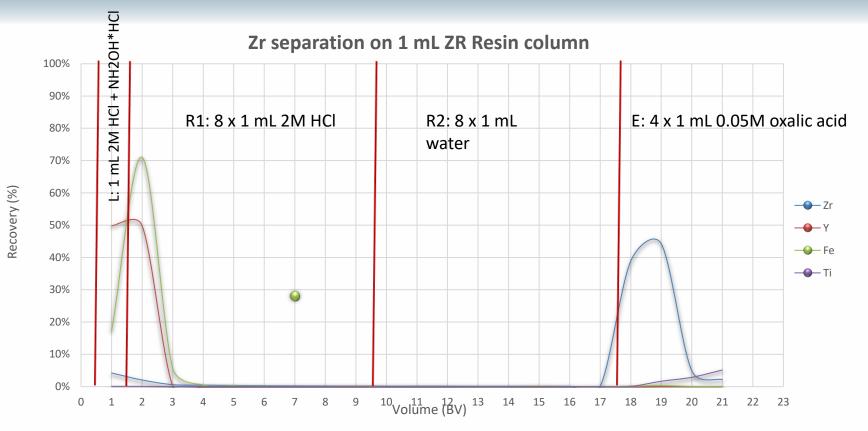
- Original scope: Hydroxamate based resin
 - Standard for Zr separation from Y targets
 - Ready to use / no activation
 - Facile Zr elution (avoid 1M oxalic acid)
- Zr-89 production via (p,n) reaction from ^{nat}Y targets
 - High Zr/Y selectivity necessary
 - Alternative e.g. TBP Resin (=> Graves et al.)
- Application for other separations: Ti/Sc, Ga/Zn, Ge/Ga

ZR Resin – HCl



- No selectivity for Y, Sc
- High Ge/Ga selectivity at elevated HCl
- High selectivity for Zr, Ti, Nb, W over wide HCl conc. range
- No selectivity for alcalines and earth alcalines
- Lanthanides not retained
- Fe retention (dip at 2 3M HCl)

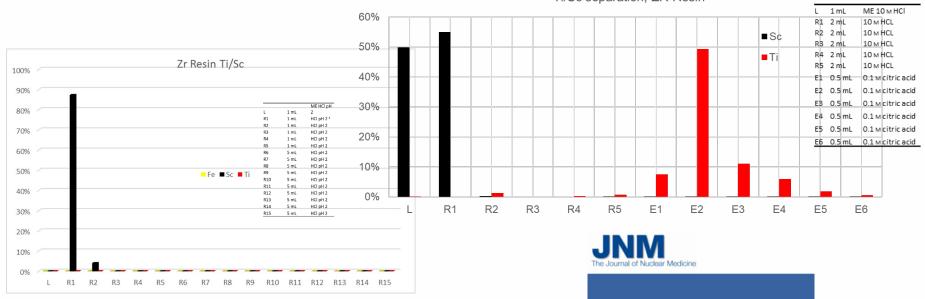
Zr Resin – HNO₃



- High selectivity for Zr, Ti, Nb, W over wide HNO₃ concentration range
 - Loss of selectivity at 6M HNO₃
 - => Resin shows colour change

- No selectivity for Y, Sc, lanthanides, earth alcalines, most transition metals,...
- High Ge/Ga selectivity at 3M HNO₃

Zr-89 separation from Y targets



- Load from 2 6M HCl
- Rinsing described by Holland may be used
- No activation with acetonitrile

- Quantitative Zr elution in 1.5 2 mL ≥ 0.05M oxalic acid
- Clean Fe removal
- Use in commercial systems
 - Taddeo, Pinctada,...

Ti-Sc Separation (Ti-44/5)

Ti/Sc separation, ZR Resin

68Ga and 45Ti production on a GE PETtrace cyclotron using the ALCEO

FLSEVIER

solid target

Mario Malinconico¹, Johan Asp

William Tieu2, Kevin Kuan2, Gia

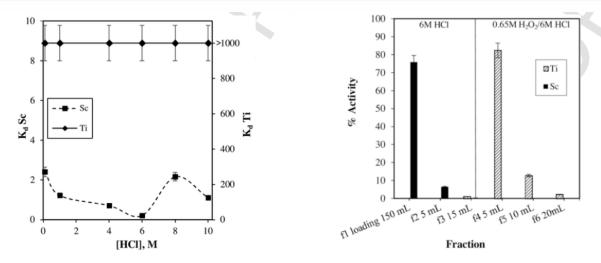
- Ti retained from (high) HCl, Sc not retained
- Ti also retained in dilute acid, Sc not => Ti generator?
- Ti elution with 0.1M citric, >0.2M oxalic acid, 0.1M H₂O₂
- Publications:
 - Malinconico et al.: J Nucl Med May 1, 2018 vol. 59 no. supplement 1 664)
 - Chaple et al. : Appl Rad Isot, Volume 166, December 2020, 109398

N sale have

purification of Titanium-45 🖈

Ivis F. Chaple ^a, ¹, Kathryn Thiele ^a, Grace Thaggard ^a, Solana Fernandez ^a, Eszter Boros ^b, Suzanne E. Lani ^a 8 🗃

Applied Radiation and Isotopes


Volume 166, December 2020, 109398

Ti-44/Sc-44

Separation of ⁴⁴Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of ⁴⁴Ti/⁴⁴Sc generator system

V. Radchenko, C.A.L. Meyer, J.W. Engle, C.M. Naranjo, G.A. Unc, T. Mastren, M. Brugh, E.R. Birnbaum, K.D. John, F.M. Nortier, M.E. Fassbender*

Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA

➢ Ti-44 production

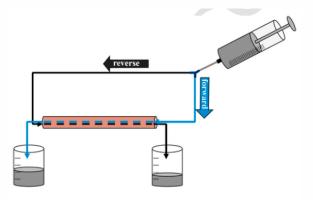
• 4g irradiated Sc

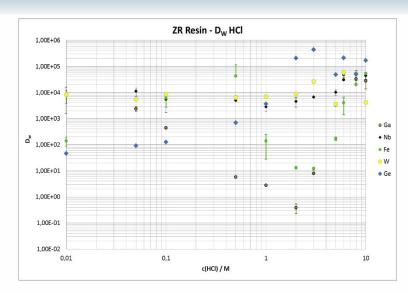
SKEM

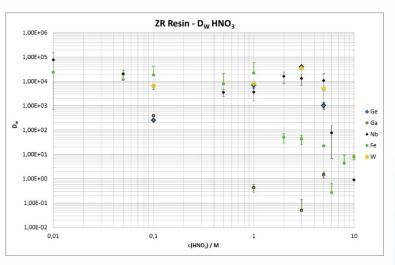
- 5 mL Zr Resin
- Ti-44 yield >95%
- 65.2 MBq Ti-44
- D_f(Sc): 10⁵

Fig. 3. HCl concentration dependency of K_d for ⁴⁴Ti/⁴⁶Sc on ZR hydroxamate resin. Fig. 5. ⁴⁴Ti/⁴⁶Sc elution profile using ZR hydroxamate resin with a load of 4 g of scandium.

Use of ZR Resin as support in Ti-44/Sc-44 generators

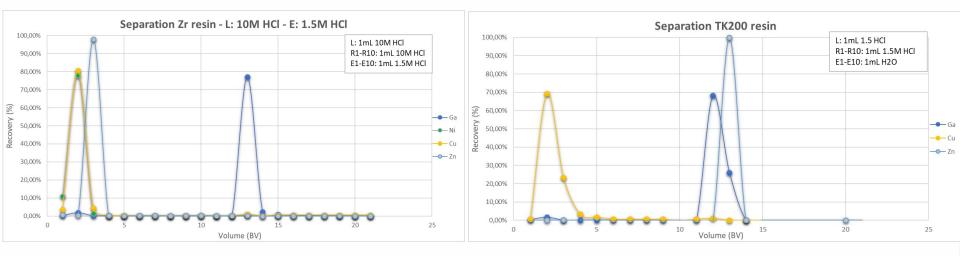



Fig. 1. Schematic concept of a forward/reverse flow radionuclide generator.


- Direct (1 mL ZR) and reverse elution (2 mL ZR)
- 65 column volumes tested up until publication
- High Sc yields, max. Ti-44 breakthrough: 4.1^E-4%
- Obtained Sc gave labelling yields > 94%
- Generator been set-up at BNL/SBU => Poster S. Houclier ISRS 2019

Ge-68 separation from GaNi or GaCo

- Loading from HNO₃, HCl or H₂SO₄
 - Target dissolution in HNO₃ or H₂SO₄ often preferred => GeCl₄ volatile
- Ongoing: Cold test on >5g GaNi
- First cycle on ZR (2 mL ZR Resin cartridge):
 - Load/rinse from 5M H_2SO_4
 - High Ge retention/purification from Ga, Ni & Co
- Elution: 0.1M citric acid (pH 3)
- Second cycle on ZR (1 mL ZR cartridge):
 - Adjustment of eluate to 5M H₂SO₄
 - Load/rinse from 5M H_2SO_4
 - Elution with 0.1M citric acid (pH 3)
- Conversion step (2 mL Guard Resin cartridge):
 - Acidification to 9M HCl, load onto Guard Resin
 - Alternative: TK400
 - Rinse with 9M HCl
 - Elution with to 0.05M HCl => pH!



Ga-68(/Ga-67) separation from Zn targets

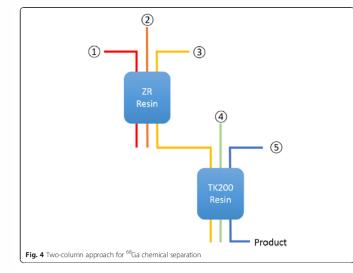
- ZR Resin
 - Loading possible from:
 - dilute HNO₃ (liquid targets)
 - > 6M HCl (solid targets)
 - Rinse under loading condition
 - Ga separation on ZR Resin
 - Elution with ~1.5M HCl

- Ga conversion step on TK200
 - TK200 load from 1.5M HCl
 - Rinse with 1.5M HCl
 - Better pH control of eluate via rinse with NaCl/HCl before elution=> Gagnon et al.
 - Elution in 2 3 BV water

\Rightarrow New IAEA TechDoc:

https://www-pub.iaea.org/books/IAEABooks/13484/Gallium-68-Cyclotron-Production

Cyclotron production of Ga-68


Rodnick et al. EINMMI Radiopharmacy and Chemistry (2020) 5:25 https://doi.org/10.1186/s41181-020-00106-9 EJNMMI Radiopharmacy and Chemistry

RESEARCH ARTICLE

Cyclotron-based production of ⁶⁸Ga, [⁶⁸Ga]GaCl₃, and [⁶⁸Ga]Ga-PSMA-11 from a liquid target

Melissa E. Rodnick¹, Carina Sollert², Daniela Starl³, Mara Clark¹, Andrew Katsifis³, Brian G. Hockley¹, D. Christian Parr², Jens Frigell², Bradford D. Henderson¹, Monica Abghari-Gerst¹, Morand R. Piert¹, Michael J. Fulham⁴, Stefan Eberl^{6*}, Katherine Gagnon^{2*} and Peter J. H. Scott^{1*}®

Table 1 High level schemes of [68Ga]GaCl₃ purifications

	Scheme A*	Scheme B		
1 ZR Load	< 0.1 M HNO ₃			
2 ZR Wash	15 mL 0.1 M HNO ₃			
3 ZR Elution / Trapping on TK200	5–6 mL ~ 1.75 M	HCI		
4 TK Wash	-	3.5 mL 2.0 M NaCl in 0.13 M HCl		
5 TK Elution	H ₂ O	1–2 mL H_2O followed by dilute HCl to formulate		

- J. Kumlin et al. (preprint):
 - ZR, LN & TK200 for solid targets

ORIGINAL RESEARCH

Multi-Curie Production of Gallium-68 on a Biomedical Cyclotron and Automated Radiolabelling of PSMA-11 and DOTATATE

Helge Thisgaard, Joel Kumlin, Niels Langkjær, Jansen Chua, Brian Hook, Mikael Jensen, Amir Kassaian, Stefan Zeisler, Sogol Borjian, Michael Cross, Paul Schaffer, Johan Hygum Dam

DOI: 10.21203/rs.3.rs-70698/v1 🚦 Download PDF

- High Ga-68 activities
- ARTMS/Odense: 10 Ci production: <u>https://physicsworld.com/a/cyclotron-based-gallium-68-generator-breaks-production-records/</u>
- W. Tieu et al.: Use of single TK400 cartridge for solid Zn targets

Nuclear Medicine and Biology Volumes 74–75, July-August 2019, Pages 12-18

Rapid and automated production of [⁶⁸Ga]gallium chloride and [⁶⁸Ga]Ga-DOTA-TATE on a medical cyclotron

William Tieu ⁴ 옷 의, Courtney A. Hollis ⁴, Kevin K.W. Kuan ⁴, Prab Takhar ⁴, Mick Stuckings ⁶, Nigel Spooner ^{6, c}, Mario Malinconico ^d

Cyclotron production of Ga-68

- Riga et al. Physica Media 2018
- Liquid target: 1.7M ⁶⁸Zn(NO₃)₂ in 0.2M HNO₃
- GE PETtrace at 12MeV, 32 min, 46 μA
- Modular Lab (EZAG)
- 4.3 ± 0.3 GBq EOB
- Separation on ZR Resin and TK200 Resin (t~40 min)
 - Loading of ZR Resin at <0.1M HNO₃,
 - Rince with 9 mL 0.1M HNO_{3.}
 - Ga Elution with 5 mL 2M HCl directly onto 100 mg TK200
 - Ga Elution from TK200 with water
- Chemical yield >75%,
 - 2.3 ± 0.2 GBq after separation
- Purity: 99.976 ± 0.002% => Ph. Eur.
- Target material recovery 80 90%
- For solid targets: single cartridge method (TK400) also under evaluation

Original paper

S. Riga et al.

Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target

Stefano Riga^{a,}, Gianfranco Cicoria^b, Davide Pancaldi^a, Federico Zagni^a, Sara Vichi^c, Michele Dassenno^d, Luca Mora^e, Filippo Lodi^e, Maria Pia Morigi^d, Mario Marengo^a

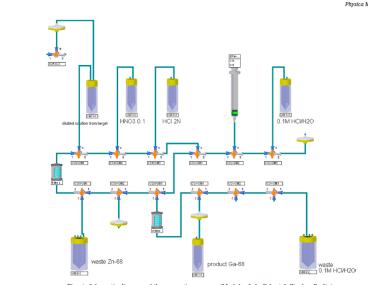
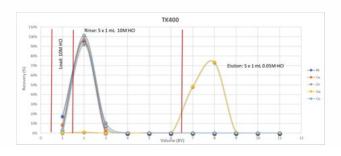
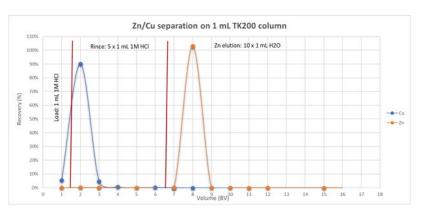
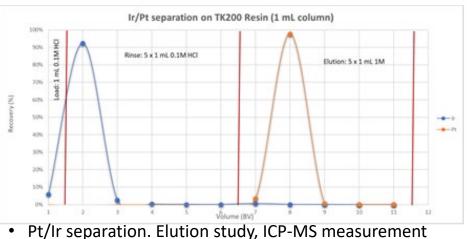
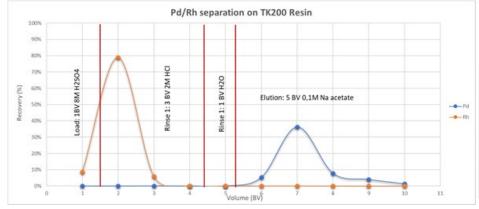




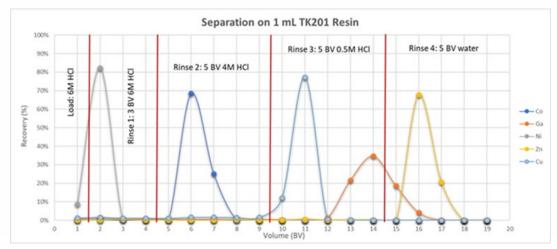
Fig. 4. Schematic diagram of the separation process (Modular Lab, Eckert & Ziegler, Berlin).


Other examples for separations on TK200 (TOPO based)

- Zn/Cu separation. Elution study, ICP-MS measurement
- Pt separation from Ir


٠

Zn-65 separation. Data kindly provided by Fedor Zhuravlev, DTU

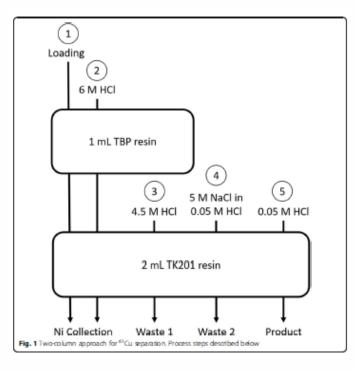

• Pd/Rh separation. Elution study, ICP-MS measurement

Zn separation from Cu

Cu-61/4 separation on TK201

- Cu-64 separation from solid Ni targets on TK201:
 - Load and rinse at 6M HCl => Ni removal => recovery/recycling
 - Co elution with 4 5M HCl
 - Gagnon et al. use of NaCl/HCl for better pH control of eluate
 - Cu elution with 0.5M HCl => Fe and Zn remain retained
 - Preferred alternative: Use of TBP (or TK400) upfront for Fe/Ga removal => allows for Cu elution in 0.05M HCl

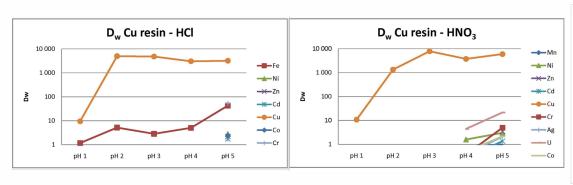
Svedjehed et al. E.NMMI Radiopharmacy and Chemistry (2020) 5:2 https://doi.org/10.1186/s41181-020-00108-7

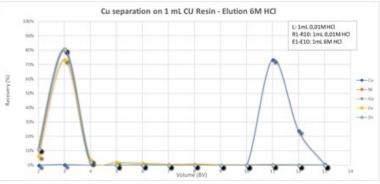

EJNMMI Radiopharmacy and Chemistry

Open Access

RESEARCH ARTICLE

Automated, cassette-based isolation and formulation of high-purity [⁶¹Cu]CuCl₂ from solid Ni targets


Johan Svedjehed¹, Christopher J. Kutyreff², Jonathan W. Engle^{2,3} and Katherine Gagnon^{1*}



CU Resin

- Oxime based resin
- High selectivity for Cu
 - Especially with respect to Zn and Ni
 - Widely used in mass spectrometry (Cu isotope ratio measurement)

- Load from pH >2, elution in high mineral acid (0.5 8M)
 - Suitable for liquid targets
 - Used for (large) solid **Zn** targets (=> Cu-67)
 - Loading not ideal for solid Ni targets (usually high HCl) => TK201
 - Elution in high HCl not compatible with labelling/injection
 - Evaporation or conversion to dilute HCl e.g. via TK201
 - High purity and labelling yields
- Method for solid Ni targets for TK201 then CU Resin under development

Cu-67 at BNL (DeGraffenreid et al.)

Purification of ⁶⁷Cu and Recovery of its Irradiated Zn Target Poster A.J. DeGraffenreid^a , R. Nidzyn^a, B. Jenkins^a, D.E. Wycoff^b, T.E. Phelps^b, A. Goldberg^a, D.G. Medvedev^a, S.S. Jurisson^b, Poster °Brookhaven National Laboratory, C-AD/MIRP—Upton, NY (USA) ISRS 2017 °University of Missouri, Department of Chemistry—Columbia, MO (USA) A.G. Medvedeva, S.S. Jurisson^b

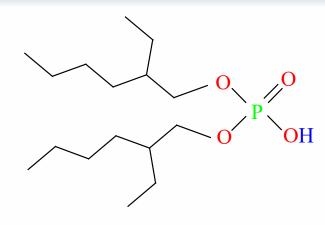
- 13.7g Zn metal dissolved to give 312 mg ZnCl₂/mL solution at pH 2
- Loading of 60,6 mL => 18.9g ZnCL2 onto
 2.4g CU Resin column => 8 mL
- Rinse with 80 mL pH2 HCl
- Elution in 2 x 20 mL 6M HCl
- Evaporation to dryness
- Chemical yield ~100%
- Single column D_f for Zn ~10 000
 - Additional removal indicated
- Ideally further Zn and Co removal
- Original suggestion: AIX

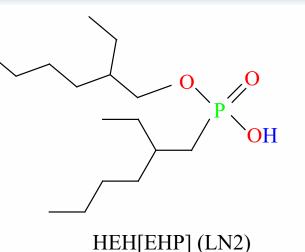
		Recovery (%)			
Nuclide	EOB Activity (mCi ± 1σ)	Load w/ Quant. Transfer	pH 2 HCl Rinse	Acid #1	Acid #2
⁶⁴ Cu	4700 ± 200	ND	ND	102	ND
⁶⁵ Zn	41.0 ± 0.8	103	ND	0.04	ND
⁵⁸ Co	63 ± 1	104	0.04	0.1	0.01

Cu Resin

- Produced 143 mCi ⁶⁷Cu
- Quantitative recovery of radiocopper
- >99.5% radionuclidic purity—single column
- ICP-OES: 132.9 µg Cu and 1.3 mg Zn
- Anion exchange column still needed to remove trace Zn
- Specific activity ⁸⁷Cu at EOB: 1.07 mCi/µg

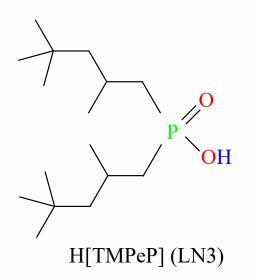
Cu Resin


Robust separation that could shorten the overall processing time to separate co-produced radionuclides and large quantities of Zn from radiocopper Cation and anion exchange columns still needed to suitably purify radiocopper

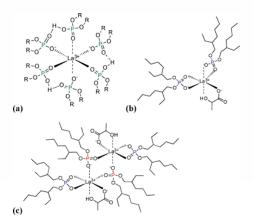

Alternatives to AIX:

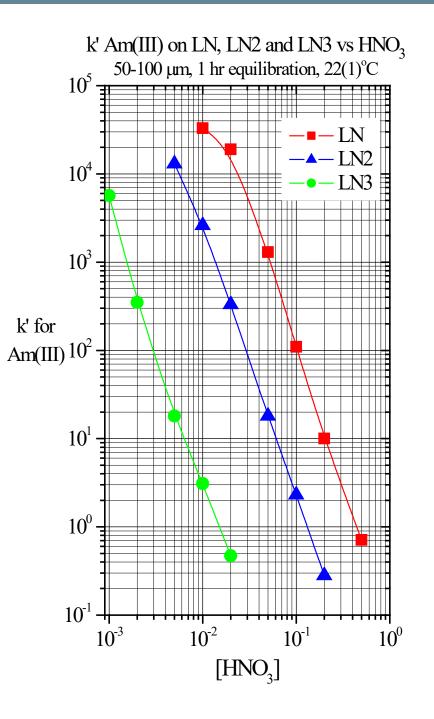
- TK201: prefered option. Cu elution from CU Resin with 6M HCl directly onto TK201, followed by Cu elution from TK201 in dilute acid
- TK200: Cu eluted from CU Resin in 1 2M HCl, direct load through TK200 (Zn retained, Cu passes)

Lanthanide separation on TK211/2/3 or LN series



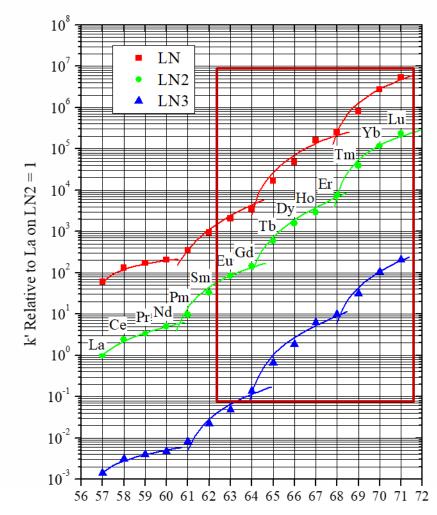
Extractants e.g. employed in LN Resins and TK211/2/3





Product sheet:

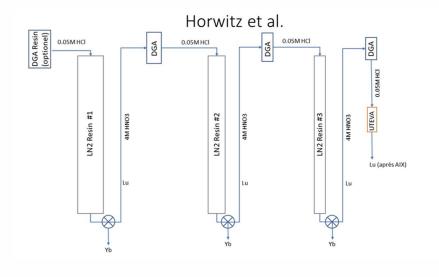
http://www.triskeminternational.com/scripts/files/5b0bc8955eeb28.64750263/LN_LN2_LN3%20RESINS-EN.pdf


$$M^{3+} + 3(\overline{HY})_2 \leftrightarrow \overline{M(HY_2)}_3 + 3H^{-}$$

Main difference: acidity

Ζ

nca Lu-177 from Yb targets



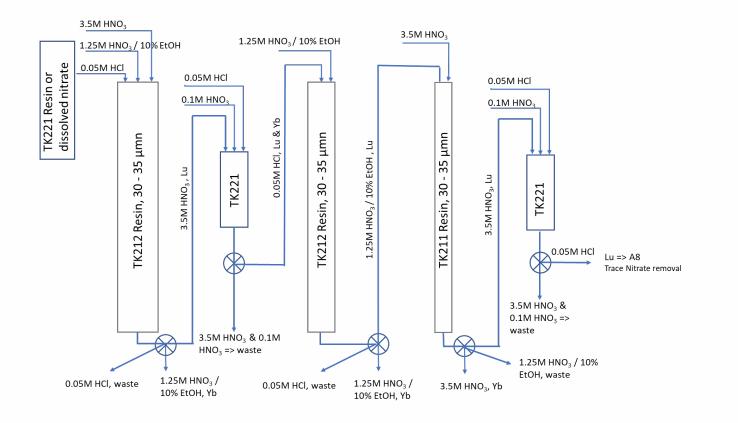
E.P. Horwitz et al.: A Process for the Separation of Lu-177 from Neutron Irradiated Yb-176 Targets, Applied Radiation and Isotopes, Vol 63, pp 23-36, (2005)

- Allows for nca Lu-177 separation from 300 mg Yb targets
- Lu and Yb chemically very similar
- Based on LN2 and DGA, N
- Large amounts of Yb introduce peak tailing
 - The more Yb the stronger the tailing
- Multi-column method needed
- Lu yield ~73%
- Rapid (<6h) but difficult to automize method
- Under optimization and upscale

Submitted to Applied Radiation and Isotopes 11/2004

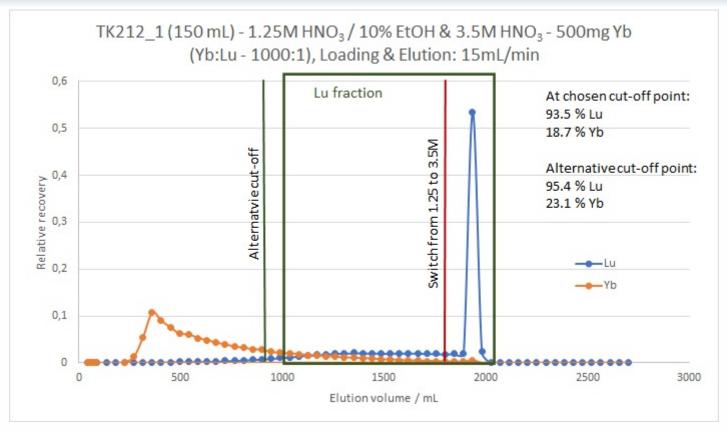
A Process for the Separation of ¹⁷⁷Lu from Neutron Irradiated ¹⁷⁶Yb Targets
E. P. Horwitz^{1,*}, D. R. McAlister¹, A. H. Bond¹, R. E. Barrans¹, J. M. Williamson²
¹PG Research Foundation, Inc., 8205 S. Cass Ave., Suite 106, Darien, IL 60561
²Eichrom Technologies, Inc., 8205 S. Cass Ave., Suite 106, Darien, IL 60561

On-going developments radiolanthanides (nca Lu-177, Tb-161)



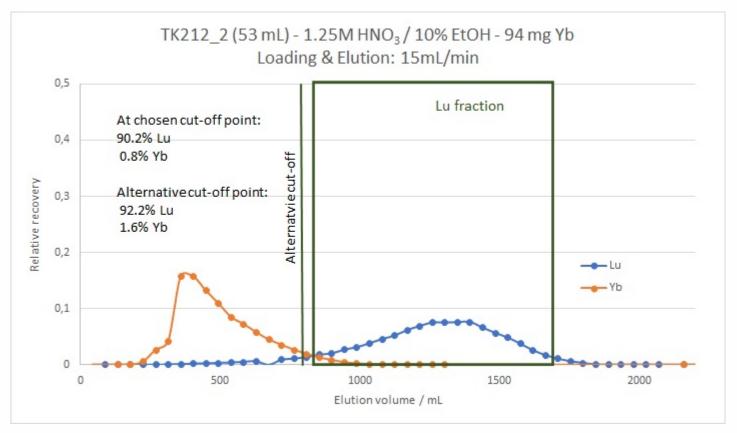
- Separation of nca Lu-177 from Yb-176 targets (500 2000 mg)
- Partial simplification via sequential separation steps
 - 'Sequential separations' approach also applicable e.g. to Tb separation
- New resins: TK211/2/3
 - On-bead mix of different extractants for improved selectivity
 - Higher extractant load
 - Small amount of long-chained alcohol and use of inert support containing aromatic groups
 => aim: improved radiolysis stability
 - 20 50 μm beads
 - Originally developped as 15μm beads => too small for large scale separations
 - Resins also applicable to Horwitz method
 - TK212 & TK221 instead of LN2 and DGA
- Prepacked PP columns under development
 - 29 mL, 53 mL, 150 mL, 375 mL and 750 mL
 - With CoA
- Upscale to 1g and 2g Yb targets under finalisation

Simplified method for Lu separation from 500 mg Yb – TK211/2 & TK221



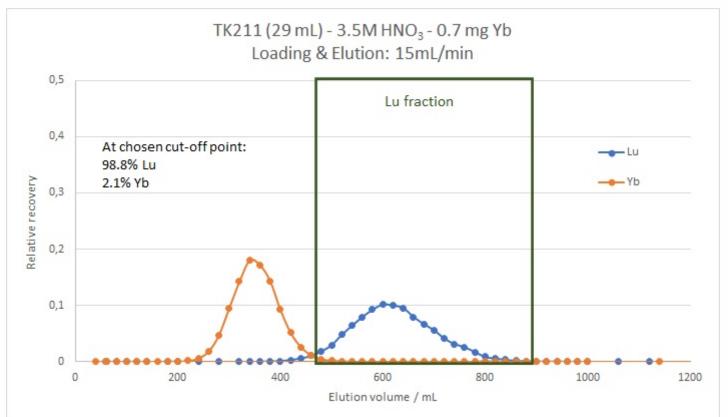
- Sequential separation step (direct load from TK212 onto TK211 for polish)
- Simplification of Horwitz method
- Can be upscaled to 1g or 2g (larger columns)

Lu separation form 500 mg Yb - **TK212**/TK221/TK212/TK211



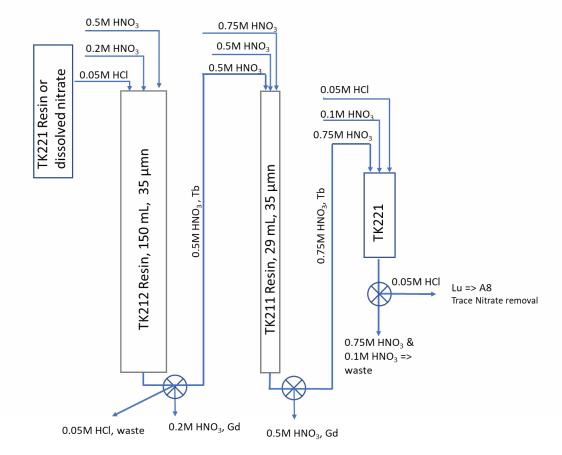
- Large tailing due to high Yb content
- Improved separation through use of 1.25M HNO_3 / 10% EtOH (v/v)
- Higher Lu yield at similar residual Yb compared to LN2 based method (cf. <u>LN Resins product sheet</u>)
- Additional benefit from use of EtOH => improved radiolysis stability
- Online separation: switch at start of Lu fraction => ideally radiation detector driven

Lu separation form 500 mg Yb -TK212/TK221/**TK212**/TK211



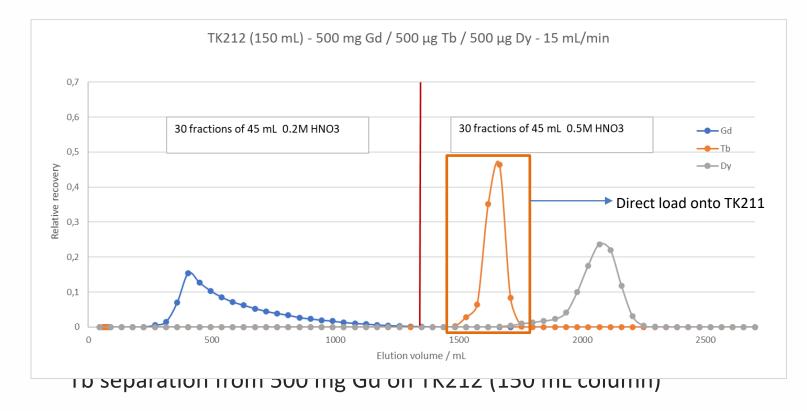
- 2nd separation step on smaller TK212 (53 mL) after TK221 for conversion from high HNO₃ to dilute HCl
- Separation with e.g. 1.25M HNO₃ (with or without 10% EtOH)
- Direct loading of obtained Lu fraction onto TK211 Resin
 - Alternatively TK221/TK212 according to Horwitze et al.

Lu separation form 500 mg Yb -TK212/TK221/TK212/**TK211**

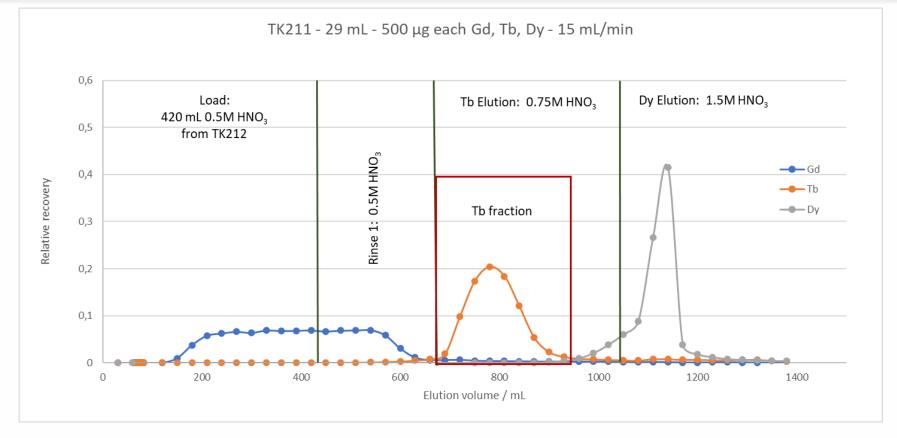


- Lu / Yb separation on TK211 (29 mL) => Lu fraction directly loaded onto TK211 from TK212
- Overall Lu recovery of process approx 85%
- Low remaining Yb
- Flow rates may be optimized
- Final step: concentration/conversion to ≤ 0.05M HCl on TK221, nitrate removal via A8

Tb separation from 500 mg Gd targets

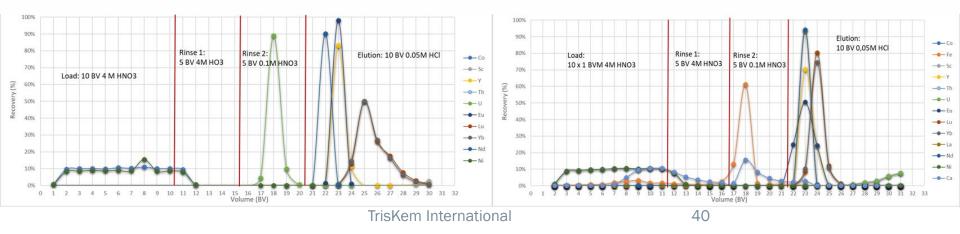

- Schematic view of the tested process example HNO₃
- Further options: improvement of separation through edition of EtOH or use of HCl

Tb separation from 500 mg Gd targets



- Initial separation on TK212 150 mL columns / HNO₃ or HCl
- TK212 method further fine tuning ongoing (e.g. adjustment of eluents to 10% EtOH)
- Separation easier than Lu/Yb
- Polishing via direct load ont TK211 (29 mL)

Tb polish on TK211



- Direct load of Tb fraction from TK212 onto TK211 (29 mL)
- Gd breakthrough during load & rinse with 0.5M HNO₃ (alternatively HCl)
- Method optimisation on-going
- Conversion to dilute HCl via TK221, A8 for nitrate removal

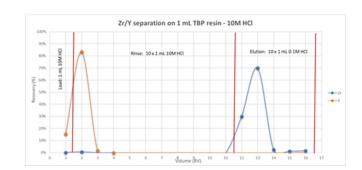
On-going developments Lu-177/Tb-161 – new TK221 Resin

- DGA well suited for 'conversion' and purification (Ca, Al, Fe,... removal)
 - Convert Lu from high nitric acid to dilute HCl
- Elution of heavy lanthanides needs elevated volumes
 - small volume prefered => high activity concentration
- Optimisation of DGA Resin => new TK221 Resin
 - Lu eluted in smaller volume
 - Should also work for Ac-225 conversion/purification => better: upcoming TK222 Resin
 - Also improved U retention

Zr-89 separation on TBP Resin

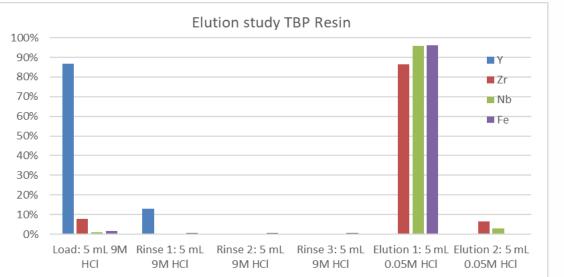
- Method published by Graves et al.
- 400mg Y foils irradiated at 14 MeV (50 μA)
- Dissolution in 10 mL conc. HCl
- Separation on 220 mg TBP Resin
- Load from 9.6M HCl, rinse with 20 mL 9.6M HCl
- Zr elution with 1 mL 0.1M HCl
- Zr yield: $89 \pm 3\%$, Y decontamination: 1.5×10^5
- Zr elution with oxalate, citrate, phosphate...
- Other applications of TBP Resin:
 - Sc isotope production from Ca targets (=> presentation EANM'18, Polatom)
 - Sn-117m from Cd targets

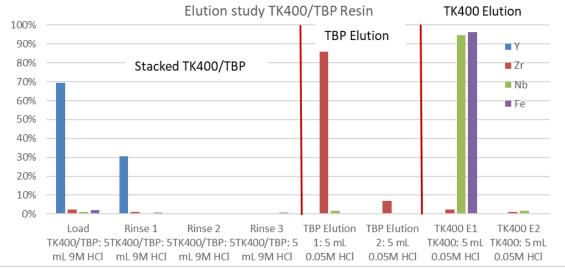
Nuclear Medicine and Biology Volumes 64–65, September–October 2018, Pages 1-7


Evaluation of a chloride-based ⁸⁹Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin

Stephen A. Graves ^a, Christopher Kutyreff ^b, Kendall E. Barrett ^b, Reinier Hernandez ^c, Paul A. Ellison ^b, Steffen Happel ^d, Eduardo Aluicio-Sarduy ^b, Todd E. Barnhart ^b, Robert J. Nickles ^b, Jonathan W. Engle ^b $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\simeq}$

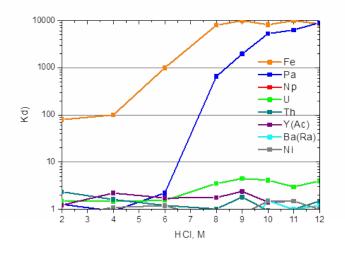
Show more

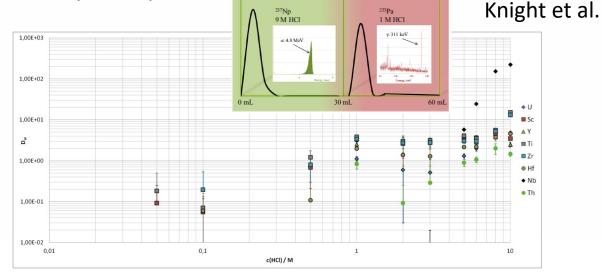

https://doi.org/10.1016/j.nucmedbio.2018.06.003


Get rights and content

Use of TK400 for Fe/Nb removal

- On-going work initial testing
- On TBP only:


Fe and Nb follow Zr

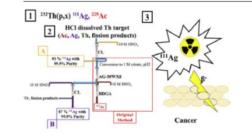

- Test on vacuum box, 2 mL
 TBP cartridge
- Removal of Fe & Nb upfront possible using TK400 Resin
- Test with stacked 2 mL
 TK400/TBP cartridges
 - Load and Rinse: TK400 stacked above TBP
 - Elution: splitting of cartridges and separate elution
 - TBP => ZR
 - TK400 = > Fe & Nb
 - Use of TK400 before TBP seems efficient

TK400 Resin

- Long chained alcohol
- Retention only at high HCl concentration, elution in low HCl, water,...
- Main application: Pa separation (Pa-231 determination by MS/Pa-230 for medical use)
 - NPL (no selectivity for actinides, Ac, Ra, Pb,...=> Pa-230 purif.)
 - Also retains Mo, Fe, Po, Ga
 - => single column Ga-68 from solid targets => Tieu et al.
 - Under testing for At separation and Ge conversion to dilute HCl
 - Nb separation from Zr possible (Nb-90)

CL Resin

Chromatographic separation of the theranostic radionuclide ¹¹¹Ag from a proton irradiated thorium matrix


Tara Mastren ^a, Valery Radchenko ^{a, 1}, Jonathan W. Engle ^{a, 2}, John W. Weidner ^a, Allison Owens ^b, Lance E. Wyant ^b, Roy Copping ^b, Mark Brugh ^a, F. Meiring Nortier ^a, Eva R. Birnbaum ^a, Kevin D. John ^a, Michael E. Fassbender ^{a, *}

^a Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
^b Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

HIGHLIGHTS

- Chromatographic recovery of medical isotope ¹¹¹Ag from proton irradiated thorium targets.
- First-time measured equilibrium distribution coefficients for silver and ruthenium on CL resin.
- ²³²Th (p, fission) cross-section data for the formation of ¹¹¹Ag and ^{110m}Ag.

GRAPHICAL ABSTRACT

Anal. Chem., 2018, https://pubs.acs.org/doi/10.1021/acs.analchem.8b01380

CrossMark

Separation of protactinium employing sulfur-based extraction chromatographic resins

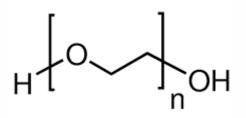
Tara Mastren[†], Benjamin W. Stein[†], T. Gannon Parker[†], Valery Radchenko^{†#}, Roy Copping[‡], Allison Owens[‡], Lance E. Wyant[‡], Mark Brugh[†], Stosh A. Kozimor[†], F. Meiring Nortier[†], Eva R. Birnbaum[†], Kevin D. John[†], Michael E. Fassbender^{†*}

[†]Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA

[‡]Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

[#]Current Address: Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada

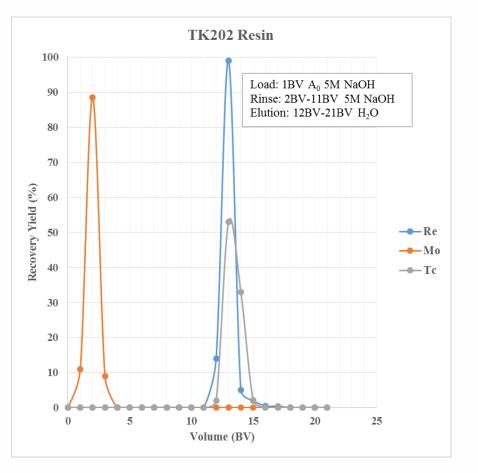
CL Resin - Iodine removal from effluents


Decamp et al.: Iodine removal from elevated sample volumes§

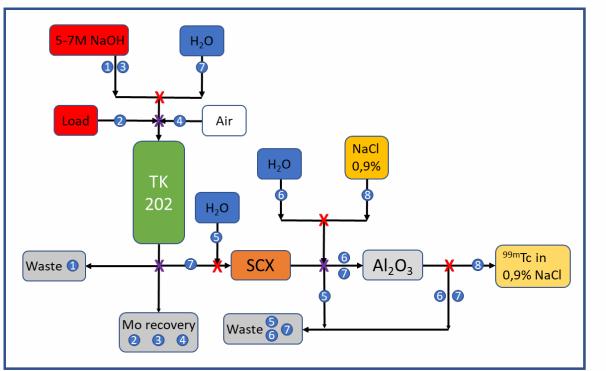
- Treatment of complex process effluents
 - > 10 L radioactive effluent (1M HNO₃)
- Issues with rad. waste storage
 - Storage as liquid waste challenging
 - Preferably stored as solid waste
- Use of mixed-bed columns
 - 3g Ag loaded CL resin (plus 4g XAD-4 resin)
- ➢ Flow rate up to 180 mL/min
- Radio-iodine retention: 89% 98%
- Retention of up to 2000 GBq radio-iodine per 7g column

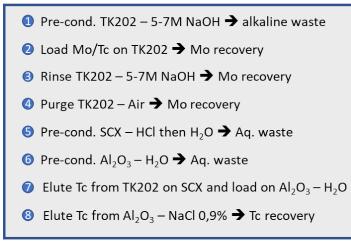
> Decontamination of effluents e.g. nuclear medicine departments

Beta testing: TK202 Resin


- Based on Polyethylene Glycol
 (PEG) grafted on inert support
- Tc retention from high NaOH (preferably 7M NaOH)
- Tc retention increased by Mo
- Separation from high masses of Mo
- Elution with water
- Pass through CEX and aluminium oxide for trace Mo removal
- Potential uses:
 - Radiopharmacy => direct Tc-99m production by irradiation of Mo targets
 - Cyclotron or reactor
 - Decommissioning => Tc determination in decommissioning samples after sample fusion

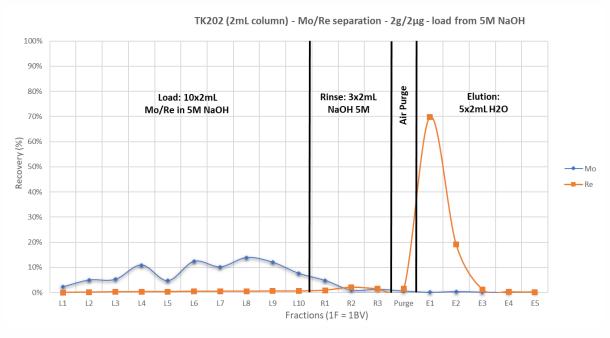
TK202 Resin – Elution curves




- Tests show Re-Tc have similar behaviour in tested conditions
- Clean separation of Re-Tc and recovery in 5BV H2O
- Tests at Polatom with simulated Mo targets
- Poster presentation at ISTR2019, Vienna, 28/10/19 – 01/11/19
 - Tc recovery > 90% for 6 8g Mo per g of TK202
 - Tc recovery > 80% for 12g Mo per g of TK202

Tc-99m separation from Mo targets – suggested scheme (similar to Zeisler et al.)

TK202 : 35-75 or 75-150μm X : 3-ways valve X : 4-ways valve SCX : Strong Cation Exchange Al₂O₃ : Acidic Alumina

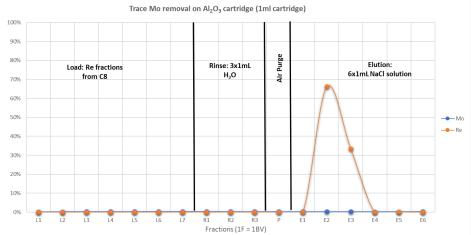


Developed with ReO₄⁻ as TcO₄⁻ surrogate

Re recovered on saline solution from alkaline

Separation with 2g Mo → From 20mL to 2mL Separation with 200g Mo → From 3L to 20mL

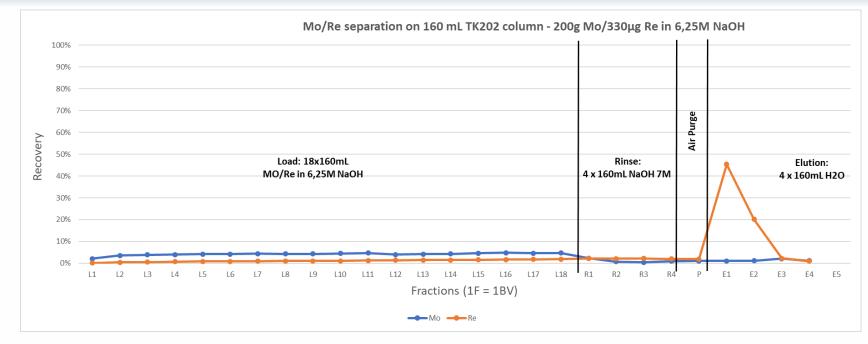

Tc-99m via cyclotron route

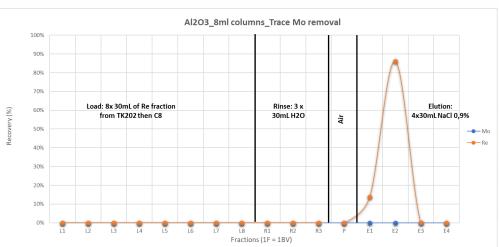


Tests performed cold with 2g Mo and 2 μ g Re

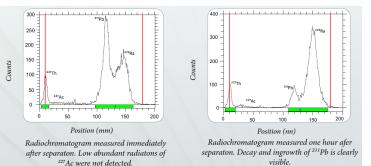
- 2 mL TK202 cartridge
- 2 mL C8 cartridge
- 1 mL Al2O3 cartridge

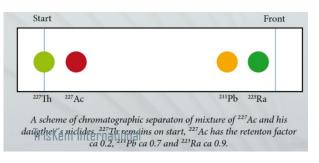
Method similar to Zeisler et al. High Re yield (~90%) in 2 – 3 mL 0.9% NaCl solution





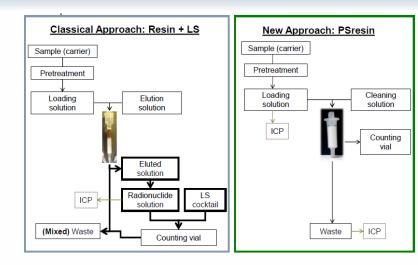
On-going :Tc-99m from large Mo targets

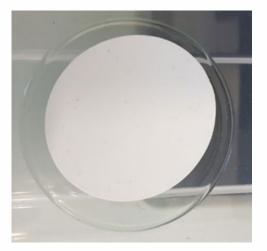

- On-going work on 200g Mo
- ~160 mL TK202 column
- Load from 6 7M NaOH elution in water
- Pass through C8 cartridge for acidification and Na removal
- Final concentration/conversion to 0.9%
 NaCl on 8 mL Al₂0₃ cartridge



DGA Sheets

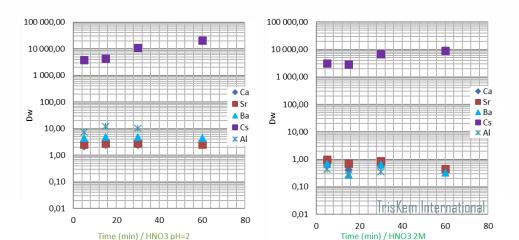
- TO-DGA (normal DGA) and TEH-DGA (branched DGA) available
- QC of radionuclides and generator eluents (p.ex. Ra-223, Ac-225/Bi-213, Pb-212, Ge-68/Ga-68 ...)
 - TLC scanner or radiometer/LSC after cutting
 - Therapy: alpha emitters
 - Diagnostics e.g. generator produced Ga-68
- More types of sheets under development (selectivities, geometry)
 - TK201, LN, UTEVA,...
- 2D TLC under development => use in decommissioning
 - Quadratic sheet, two runs (90° turn in-between) with different acids => 2D pattern
 - Measurement e.g. with Ai4r Beaver system (high res α/β discrimination counting)



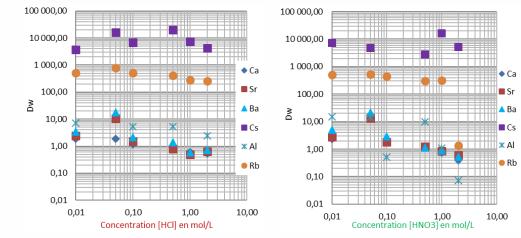

- Scintillating Resins (PSm)
- Developped by Uni Barcelona (Garcia)
- « TK ELScint » range of products
- First: « TK TcScint »
 - Similar to TEVA
- Plastic scintillator beads impregnated with selective extractants
- Direct measurement of cartridges after loading on LS counter
- Environmental/decommissioing monitoring => Tc-99 by LSC
- Chemical yield preferably via Re/ICP-MS in effluents
- Use in QC?

Under development

- Range of extractive membrane filters (MF)
- Rapid separation (up to 100 mL / min)
- Preferably for use with water samples (1 5L)
 - Under development:
 - TK201 (Tc)
 - TK100 (Sr), TK101 (Pb, Ra)
 - TK200 (actinides)
 - AC (gross alpha)
 - CL Resin (radio iodine)
 - Calixarenes (Ra)
 - ...


PAN based resins for decontamination

- Laureate '1. vague concours d 'innovation 2018' of the BPI
- Range of PAN based resins (other polymers possible depending on pH)
 - Decontamination of effluents => radionuclides, heavy metals, pollutants...
 - High content of inorganic compounds (~85%)
 - Organic compounds also possible (HDEHP, TBP,...)
 - Mechanical stability
 - Control of particle shape, diameter, porosity
 - High porosity/active surface => fast kinetics


Park et al.

PAN based resins

- Platform technology
 - Control/choice of wide range of selectivities
 - Variety of inorganic compounds embedded in organic matrix
 - AMP & KNiFC for Cs, SbO for Sr/Y, ZrP for Sr, TiO for actinides and activation products, FeO for Se, CeO₂ or SnO₂ for Ge, NaBiO₃ for Am/Cm separation, MnO₂ for Ra,...
 - Organic extractants may be embedded, too

AMP-PAN selectivity in various concentrations of HNO₃/HCl

Large scale production of resins under development

Some other on-going projects

- SE Resin
- Sc separation
- Ac separation (incl. Ra recycling)
- At separation (TK400,...)
- TI separation
- Improvement of radiolysis stability
- Functionalised polymers & silicates,...
 - e.g. DO-DGA, DE-DGA, macrocycles,...
- Ra separation (TK100/1, CAs)

- Microfluidics
- Impregnated tube

inserts/pipette tips

- Impregnated membranes
- Li Resin
- Cs/Rb separation (TK300)
- Rapid tests
 - Test sticks => Uni Southampton
 - DGA Sheets (2D TLC)
 - Spin coated discs
- DGT (Diffusive Gradients in Thin Films) => 'bio-availability'

Thank you for your attention!

in