

de la santé et de la recherche médical

⁸²Sr/⁸²Rb production: characterization and quantification by mass spectrometry of various 18-crown-6 crow-ethers release induced by radiation of Sr resin®

C. Alliot^{a,b}, M. Dupleichs^a, S. Happel^c, <u>S. Huclier^{a,d}</u>

^aARRONAX, 1 rue Arronax - CS 10112 - 44817 Saint Herblain cedex, France ^bINSERM U892, CRCNA, Nantes 44007, France

^cTrisKem International -Parc de Lormandiere - Bat. C - Rue Maryse Bastie - Campus de Ker Lann - 35170 Bruz - France

^dLaboratoire SUBATECH, 4 rue A. Kastler, BP 20722, 44307 Nantes cedex 03, France

Introduction

- ⁸²Rb ($T_{1/2}$ =75 s) used in cardiology
 - β^+ emitter used in PET imaging
 - Obtained from ⁸²Sr ($T_{1/2}$ =25.35 d) generator
- ⁸²Sr produced in high energy accelerators via the ⁸⁵Rb(p,4n)⁸²Sr reaction from RbCl targets or Rb metal targets
 - Nowadays purified by ion exhange chromatographic process using three different columns (Biorad Chelex-100, DOWEX1x8, DOWEX50x8)
 - Potential contaminations of Ba or Ca (Sr competitors) in the final solutions that can imply release of Sr during the use of the generator

An alternative way for ⁸²Sr purification is proposed using a Sr-spec resin from Triskem.

- **Discarding of Ba and Ca**
- The authorities require that no component of the resin is released in the ⁸²Sr final solution

Context

+

The resin is an impregnated resin

- Few Ci of ⁸²Sr Up to 1 kGy
 - 1. sorption of Sr in HNO₃ 4M and elution of impurities
 - 2. Elution in HNO_3 0.01M

Extracting agent

4',4"(5")-Di-tert-butyldicyclohexano -18-crown-6

To validate the use of this resin, we have to determine the different species leaching during purification

Qualitative analysis

- Injection by infusion in aqueous solutions
- APCI and ESI
 - are soft ionization modes (minimizing) fragmentations)
 - have been tested and optimized for crown ethers
- Sheathing solvent
 - 50% ultra pure water 50% methanol

Results

The study established that the APCI (+) mode is most favorable

for the analysis of Crown ethers.

This last reduces significantly the interference due to the analytical environment.

- Linear results of different crown ethers as a function in concentration
 - Quantification of degradations products
- Higher sensitivity via ESI(+) method
 - LD = 28.32 ppb (4',4"(5")-Di-*tert*-butyldicyclohexano-18-crown-6)
- To improve the limit of detection, we developed a liquid-liquid extraction process by octanol to pre-concentrate the crown-ether

✓ LD can be divided by ten : LD=2.832 ppb

First results

In the Sr solution, crown-ether quantity is less than 68.4 µg for more than 2 Ci. The maximum quantity is also 3.42 µg/generator which correpsonds to the maximal injectable to human*

* The only existing reference in Eur. Pharmacopeia : 50µg of kryptofix 222 / day (crown ether used for purification of F-18)

Conclusion and Further Works

The determination of crown ether released by leaching from the non-radiated resin is possible.

