⁹⁰Sr determination in milk

Luca Fornara
Daria Rossi
Alessandro Fausti

Triskem users' Group Meeting Rome 21 february 2013

Nucleco

- operator trained and specialized in the field of radioactive waste management and decontamination of nuclear sites
- is engaged in integrated waste management and radioactive sources and in the decommissioning of nuclear installations

Activities

- characterization, treatment and conditioning of radioactive waste produced by decommissioning of nuclear power plants
- Nucleco carries out activities aimed at technological development in the field of chemical / physical analisis and in the optimization of the production processes of radioactive waste and toxic-harmful. The chemical laboratory is particularly active in the characterization of cement mortars necessary for conditioning and encapsulation of radioactive waste
- developing methods for the chemical treatment and the extraction of radionuclides from radioactive liquid and solid matrices.

Why 90Sr determination in milk?

 JRC's environmental monitoring needs the analysis of milk sample taken from the surrounding farms

Other methods:

- UNI 10374 1994: only emergency response (detection limit ≥ 37Bq/L)
- 18 days waiting Yttrium ingrowth for the measurement

What do we need?

- Rapid sample preparation
 - Effective removal of interferences
 - Consistent tracer/carrier recoveries
 - Rugged and easy to use
- "User friendly" procedures
 - Emergency and routine samples

Method's details

- Cation exchange resin (cation pre concentrating and organic compound removing)
- Strontium separation (Sr Resin with vacuumassisted flow rates)
- Liquid scintillation counting
- ICP-MS (chemical yield)

Flowchart of radiostrontium method in milk

Column load solution

Cation exchange resin

Strontium separation

Why ICP-MS for chemical yield?

Sr stable used as tracer instead of ⁸⁵Sr allows the reduction of the radiological risk for the operators

⁸⁵Sr gamma measurement has an uncertainty of 12% Vs. Sr stable ICP MS measurement of 2,5% (k=2, 95%)

LSC background reduced

Faster turnaround times

⁹⁰Sr results for 0,5 l spiked milk samples

- Field of application 0,1-37 Bq/L
- Minimum detectable activity (counting time 30 minutes, $\alpha = \beta = 0.05$) 0.13Bq/L

Concentration	Standard uncertainty	Standard deviation of repeatability
0,25 Bq/L	25, 2%	19,6 %
1,8 Bq/L	7,2 %	5,8 %
31,1 Bq/L	5,4 %	1,9 %

Thanks for your attention!

