ЭКСТРАКЦИОННАЯ ХРОМАТОГРАФИЯ

Катиониты и аниониты аналитической чистоты

Хелатные ионообменные смолы

Аксессуары для хроматографии
<table>
<thead>
<tr>
<th>Продукция</th>
<th>Применения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аксессуары</td>
<td>Аксессуары для колонок и картриджей</td>
</tr>
<tr>
<td>Фильтры Resolve™</td>
<td>Приготовление источников для альфа-спектрометрии</td>
</tr>
<tr>
<td>Стальные диски</td>
<td>Осаждение электролизом</td>
</tr>
<tr>
<td>Ag и Ni диски</td>
<td>Самоосаждение Po</td>
</tr>
<tr>
<td>Смола AC</td>
<td>Выделение актиноидов / измерение суммарной альфа-активности</td>
</tr>
<tr>
<td>Смола BE</td>
<td>Be</td>
</tr>
<tr>
<td>Смола CL</td>
<td>Cl, I</td>
</tr>
<tr>
<td>Смола CS</td>
<td>Cs-134,7</td>
</tr>
<tr>
<td>Смола CU</td>
<td>Cu</td>
</tr>
<tr>
<td>Смола DGA</td>
<td>Актиноиды, Am, Y, Ra</td>
</tr>
<tr>
<td>Смола Diphonix*</td>
<td>Актиноиды и переходные металлы</td>
</tr>
<tr>
<td>Ионообменные смолы</td>
<td>Ионообменные смолы аналитической чистоты</td>
</tr>
<tr>
<td>Смола LN</td>
<td>Лантаноиды, Ra-228</td>
</tr>
<tr>
<td>Смола MnO2</td>
<td>Ra</td>
</tr>
<tr>
<td>Смола NI</td>
<td>Ni</td>
</tr>
<tr>
<td>Смола PB</td>
<td>Pb</td>
</tr>
<tr>
<td>Смола Pre-Filter</td>
<td>Удаление следов органических загрязнений</td>
</tr>
<tr>
<td>Смола RE</td>
<td>Th, U, Np, Pu, Am, Cm, РЗЭ</td>
</tr>
<tr>
<td>Смола SR</td>
<td>Sr, Pb</td>
</tr>
<tr>
<td>Смола TEVA*</td>
<td>Tc, Th, Np, Pu, Am/лантаноиды</td>
</tr>
<tr>
<td>Колонки Tritium</td>
<td>^3H</td>
</tr>
<tr>
<td>Смола TRU</td>
<td>Fe, Th, Pa, U, Np, Pu, Am, Cm</td>
</tr>
<tr>
<td>Смола UTEVA*</td>
<td>Th, U, Np, Pu</td>
</tr>
<tr>
<td>Смола WBEC</td>
<td>Tc, Pu</td>
</tr>
<tr>
<td>Диски Nucfilm</td>
<td>Ra</td>
</tr>
</tbody>
</table>

*Основные области применения выделены красным цветом

Также имеются в продаже: Жидкие сцинтилляционные смеси и расходные материалы
СОДЕРЖАНИЕ

Экстракционная Хроматография... 4

Экстракционно-Хроматографические смолы..6
Смола UTEVA...6
Смола TRU..8
Смола TEVA...9
Смола SR..10
Смола PB...12
Смола DGA...14
Смолы AC и BE..16
Смола PREFILTER..16
Смола NI..17
Смола RE..17
Смола CL..18
Смола CU..19
Серия смол LN..20
Смола WBEC...21

Ионообменные смолы..22
Аниониты и катиониты для аналитических задач.......................................22
Смолы DIPHONIX, DIPHOSIL, MONOPHOS..22
Смолы CS..23
Колонки TRITIUM...24
Смола MnO₂...24

Пробоподготовка..26
Диски Nucfilm...26
Фильтры Resolve™..26
Диски для приготовления альфа-источников..26

Аксессуары...27
Выкуумный бокс и аксессуары...27
Аксессуары для колонок...27
Эталоны и расходные материалы для ICP-MS..27

Система Pyrolyser для выделения газообразных радионуклидов..................28

Области применения..29
Радиохимический анализ..29
Производство радионуклидов..29
Аналитизметаллов...29
Совместные инновации...29
Ссылки...30
Экстракционная хроматография (ЭХ) — это методика, идеально подходящая для выделения радионуклидов из широкого круга типов проб. Данная методика сочетает в себе селективность жидкость-жидкостной экстракции с простотой операций колоночной хроматографии.

Рис. 1: Гранула смолы

Принципы

На рис. 1 схематично изображена часть поверхности гранулы экстракционно-хроматографической смолы; показаны три главных компонента ЭХ-системы: инертный носитель, закрепленная фаза и подвижная фаза.

В качестве закрепленной фазы используются индивидуальные жидкие экстрагенты, либо их смеси. Кроме того, для разжижения экстрагента и повышения гидрофобности закрепленной фазы могут быть использованы органические разбавители.

Подвижная фаза обычно представляет собой раствор кислоты (напр. азотная или соляная кислота); комплексообразователи, такие как щавелевая или плавиковая кислоты, часто используются для повышения селективности или для удаления хорошо удерживаемых ионов металлов из колонки.

Соотношение между коэффициентом распределения \(D \), измеренным для жидкостной экстракционной системы, и числом свободных колоночных объемов, пропускаемых до полного насыщения \((K') \) для соответствующей ЭХ-системы, приведено в уравнении (1).

Важно отметить, что концентрация экстрагента в ЭХ-системах, где разбавитель может отсутствовать вовсе, как правило, значительно выше, чем в обычных жидкостных экстракционных системах. Таким образом, \(D \) и \(K' \) обычно определяют не непосредственно для ЭХ-систем, а рассчитывают через массовый коэффициент распределения \(D_w \), определить который проще. Массовый коэффициент распределения \(D_w \) находят, измеряя количество ионов металла, поглощенных определенной массой смолы из известного объема водного раствора. В описанных здесь исследованиях для определения убыли ионов металла использовали радиоактивные индикаторы. Массовый коэффициент распределения при этом рассчитывали по формуле (2):

\[
1) \quad k' = D \cdot \frac{V_s}{V_m}
\]

где \(V_s \) и \(V_m \) объемы закрепленной и подвижной фаз соответственно.

\[
2) \quad D_w = \frac{A_0 - A_s}{A_s} \cdot \frac{\text{mL}}{g}
\]

где \(A_0 \) — \(A_s \) = активность, сорбированная на смоле массой \((g) \), а \(A_s \) = активность в растворе известного объема mL (мл).
Объемный коэффициент распределения D рассчитывают как объем закрепленной фазы в грамме смолы, деленный на D_w [3]. Объем закрепленной фазы определяют через ее массу, сорбированную на инертном носителе, и плотность закрепленной фазы, измеряемую независимо. Число свободных колоночных объемов, пропускаемых до полного насыщения k' рассчитывают по формуле (1).

Величины v_s и v_m определяют через массу смолы, необходимую для заполнения колонки до известного объема, и плотность ЭХ-смолы. Детали, необходимые для расчета D и k', и независимые измерения величин v_s и v_m можно найти в [3-5]. В табл. 2 приведены отношения v_s/v_m и коэффициенты для пересчета D_w в k' для шести ЭХ-смол.

Табл. 1: Пересчет D_w в k'

<table>
<thead>
<tr>
<th>Смола</th>
<th>v_s/v_m</th>
<th>Для пересчета D_w в k' разделить на</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEVA</td>
<td>0.23</td>
<td>1.9</td>
</tr>
<tr>
<td>UTEVA</td>
<td>0.25</td>
<td>1.7</td>
</tr>
<tr>
<td>TRU</td>
<td>0.22</td>
<td>1.8</td>
</tr>
<tr>
<td>Actinide</td>
<td>0.20</td>
<td>1.9</td>
</tr>
<tr>
<td>Sr</td>
<td>0.22</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Достижение разделения

Для достижения разделения в ЭХ ширина пика при десорбции должна быть достаточно маленькой во избежание быстрого проскара и взаимного загрязнения элементов при попытке их разделения. Даже если экстрагенты, содержащиеся в закрепленной фазе, высокоселективны по отношению к одному из ионов, плохая эффективность колонки, выраженная в слишком широком пике десорбции, может привести к отсутствию разделения.

Производительность колонки обычно выражают через высоту, эквивалентную теоретической тарелке. Высота тарелок является сложной функцией множества физических и химических факторов. В ЭХ-системах производительность колонки зависит прежде всего от явлений переноса, диффузии в закрепленной фазе и кинетики экстракции [6].

Вклад каждого из этих трех факторов в производительность колонки зависит от особенностей химической системы, размера частиц и пористости носителя, загруженного экстрагента, скорости подвижной фазы и рабочей температуры.

Достижение селективности

Представленные ЭХ-смолы покрывают большой диапазон селективностей и позволяют эффективно решить большое число задач по выделению некоторых продуктов деления, индивидуальных актиноидов или их групп. На следующих страницах показаны зависимости сорбции, определяемой через величину k', от кислотности раствора для некоторых актиноидов и других элементов. В таблице 2 представлены важнейшие свойства некоторых этих смол.

Табл. 2: Свойства ЭХ смол.

<table>
<thead>
<tr>
<th>Крупность (мкм)</th>
<th>100-150, 50-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плотность гранул ($г/мл$)</td>
<td>0.33 to 0.39</td>
</tr>
<tr>
<td>Свободный колоночный объём</td>
<td>65 to 69</td>
</tr>
<tr>
<td>(% от объема смолы)</td>
<td>*50% от максимальной ёмкости</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Рабочая ёмкость*</th>
<th>(mg/ml смолы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEVA</td>
<td>15 (Pu)</td>
</tr>
<tr>
<td>UTEVA</td>
<td>32 (U)</td>
</tr>
<tr>
<td>TRU</td>
<td>4,5 (Am)</td>
</tr>
<tr>
<td>Sr</td>
<td>6,5 (Sr), 12 (Pb)</td>
</tr>
<tr>
<td>Ln</td>
<td>11 (Nd)</td>
</tr>
<tr>
<td>Actinide</td>
<td>14 (Am), 8,6 (Nd)</td>
</tr>
</tbody>
</table>

*50% от максимальной ёмкости
By E. Philip Horwitz
Смола UTEVA

Смола UTEVA (Уран и четырехвалентные актиноиды) используется для выделения урана и четырехвалентных актиноидов, таких как Np, Th и Pu. Нанесенным на инертный носитель экстрагентом является DP[PP] (дипентилпентилфосфонат) [8], обладающий селективностью к U(VI), Th(IV), Np(IV) и Pu(IV) на фоне таких часто встречающихся элементов как Al, Fe, щелочные и щелочноземельные металлы (см. рис. 3).

Стойкость смолы по отношению к мешающему влиянию часто встречающихся элементов матрицы заметно облегчает, в частности, альфа-спектрометрический анализ U в малых пробах почв; уран из полностью разложенной пробы можно непосредственно выделять на смоле UTEVA после растворения в 3M HNO₃/1M Al(NO₃)₃.

В зависимости от определяемых радионуклидов, смолу UTEVA можно использовать как индивидуально, так и в сочетании с другими смолами. В сочетании со смолой TRU смола UTEVA часто используется для последовательного выделения U/Pu/Am.

Также смола UTEVA часто используется для выделения Zr из различных матриц.

Рис. 2: Дипентилпентилфосфонат (DP[PP]), также называемый диамиламилфосфонат (DAAP).

Рис. 3: Величины k', смола UTEVA, различные элементы, HNO₃ и HCl [8].

Области применения:
- U в пробах почвы, воды и мочи
- Актиноиды в пробах почвы, воды и мочи
- Выделение Zr
Выделение U, Pu и Am из водных проб по методике
Eichrom ACW03-21

Проба воды 0.5 – 1 л
Корректировка pH до 2
Добавить внутренний стандарт
Добавить 0.5 mL 1.25 M Ca(NO₃)₂. Нагреть
Добавить фенолфталеин и 20 ml 3.2M (NH₄)₂HPO₄
Медленно добавить NH₄OH к осадку Ca₃(PO₄)₂ до перехода цвета индикатора
Отцентрифугировать и промыть осадок водой
Растворить в 10 - 15 ml 3HNO₃ – 1M Al(NO₃)₃
Добавить 2 мл 0.6M сульфамата Fe(II). Добавить 2-3 гранулы NH₄SCN и аскорбиновой кислоты для восстановления Fe(III)
Пропустить через 2-мл колонку или картридж со смолой UTEVA, кондиционированной 5 ml 3M HNO₃
Промыть 2 х 5 ml 3M HNO₃
Собрать пропущенные растворы (содержат Pu, Am)
Промыть 5 ml 9M HCl
Промыть 20 мл 5M HCl – 0.05M шавелевой кислоты (удаление Np, Th)
Резэкстракция U 10 мл 1M HCl

Электроосаждение или микроосаждение
Электроосаждение или микроосаждение (с восстановителем – TiCl₃)
Альфа-спектрометрия

Подробная информация на: http://www.triskem-international.com/full_eichrom_methods.asp
Смола TRU

Закрепленная фаза смолы TRU (Трансурановые элементы) состоит из смеси карбомоилметилфосфоноксида (КМФО) и трибутилфосфата (ТБФ).

Рис. 4: КМФО

Смола TRU применяется для извлечения и разделения четырех- и шестивалентных актиноидов, а также, в отличие от TEVA и UTEVA, Am(III) [4,9]. Подобно смолам UTEVA и TEVA, смола TRU позволяет отделять актиноиды от элементов матрицы и друг от друга путем смены типа и концентрации кислоты.

Fe(III) не извлекается смолой в интервале кислотности 0.05 - 2M HNO₃. При кислотности более 2M HNO₃ сродство смолы к Fe(III) возрастает с ростом концентрации HNO₃. Такое поведение смолы TRU по отношению к Fe может быть использовано для выделения и измерения Fe-55.

Кроме того, смола TRU используется для группового концентрирования лантаноидов и удаления матрицы перед их выделением на смоле LN. Burnett и др. использовали смолу TRU в сочетании с анионитом для очистки Pa [29].

Области применения:
Определение актиноидов в пробах почвы, воды и мочи
Определение Fe-55 в водных пробах

Figure 5: Значения K’, смола TEVA, различные элементы, HNO₃ и HCl [9]
Смола TEVA

Смола TEVA используется главным образом для извлечения четырехвалентных (TetraValent) актиноидов и технеция. Экстрагентом, придающим специфичность смоле TEVA, является четвертичная аммониевая соль Aliquat®^336 [4]. Величины k’ для различных радионуклидов в HNO₃ и HCl представлены на рис. 7. Различия величин k’ в HNO₃ и HCl средах можно использовать для отделения Th, Np и Pu от других актиноидов.

Для Pu(IV), Np(IV) и Th(IV) поглощение максимально в 2-4M HNO₃. В том же диапазоне кислотности Am(III) и U(VI) не экстрагируются.

Различия k’ между HNO₃ и HCl средами может быть использовано для отделения Th от остальных актиноидов. Когда пробу пропускают через смолу в среде 4M HNO₃, Pu(IV), Th(IV) и Np(IV) поглощаются. Th можно элюировать с помощью 6M HCl, тогда как Pu(IV) и Np(IV) в этих условиях останутся в смоле. Pu может быть извлечен из смолы 4M HNO₃ или 8M HCl, после его восстановления с +4 до +3.

При особых условиях Am может быть экстрагирован смолой TEVA и отделен от легких лантаноидов (рис. 8). В 1-2M NH₄SCN – 0.1M HCO₂H Am фиксируется на смоле, тогда как La и Eu не экстрагируются. Затем Am вымывают из смолы 0,25M HCl.

Области применения:
Определение актиноидов в пробах почвы, воды и мочи
Определение Tc-99 в пробах воды и мочи
Разделение Am/LN

Рис. 7: Величины k’, смола TEVA, различные элементы, HNO₃ и HCl [4]

Рис. 6: Четвертичная аммониевая соль Aliquat ®336, R = октил или децил

Рис. 8: Разделение La-Eu и Am на смоле TEVA [4]
Смола SR

Действие смолы SR основано на принципе распознавания ионов [3,11]. Закрепленная фаза состоит из производного дициклогексано-18-краун-6, растворенного в октаноле.

Данные на рис. 10а и 10б показывают, что Sr извлекается смолой лучше, чем другие щелочные и щелочноземельные ионы и большинство других изученных катионов.

Особенно важна селективность к Sr на фоне Ca, поскольку Ca – основной компонент во многих пробах. Pb извлекается смолой SR ещё лучше, что позволяет легко рекстрагировать Sr со смолы разбавленной HNO₃, оставляя Pb на смоле.

Калий обладает очень малым сродством к смоле. Тем не менее, при его содержании свыше 0,01M, что часто встречается в случае анализа почв, растений и прочих природных образцов, он ухудшает поглощение стронция (рис. 11). В этих случаях рекомендуется осаждение оксалатов щелочноземельных элементов, чтобы избавиться от калия до проведения экстракции.

Высокая селективность смолы SR к Pb затрудняет его рекстрагацию, поэтому была разработана смола Pb. Смола SR обычно находит применение для определения Sr-89/90 и Pb-210/Po-210 в биологических и природных пробах, а также при масс-спектрометрическом определении изотопных составов Sr и Pb и в производстве радионуклидов.

Рис. 9: 4,4'(5')-ди-т-бутициклогексано-18-краун-6 [2]

Рис. 10а и 10б: Зависимости извлечения некоторых ионов металлов смолой SR от кислотности [3,11]

Области применения:
- Определение Sr-89/90 в почве, пище, воде и природных пробах
- Определение изотопных соотношений Sr и Pb
- Определение Pb-210 в пробах почв
- Определение Pb-210 и Po-210 в пище, воде и природных пробах
Выделение Sr-89/90 в водных пробах, изменённая версия методики
Eichrom SRW01-14

Проба воды объемом 1л
Добавить 5 мг Sr²⁺
Корректировка рН до 2

или

Пропустить через 10-мл колонку со смолой C-8, кондиционированной 20 мл 0.1M HNO₃
Промыть 25 мл 0.1M HNO₃
Десорбировать 50мл 8M HNO₃
Упарить досуха
Упарить с конц. HNO₃ / H₂O₂

Добавить 0.5 мл 1.25 М Ca(NO₃)₂
Нагреть
Добавить индикатор фенолфталеин и 20 мл 3.2M (NH₄)₂HPO₄
Медленно добавлять NH₄OH к осадку Ca₃(PO₄)₂ до перехода цвета индикатора
Отцентрифугировать и промыть осадок водой

Растворить в 10 мл 8M HNO₃

Пропустить через 2-мл колонку или картридж со смолой SR, кондиционированной 5 мл 8M HNO₃
Промыть 2 х 5 мл 8M HNO₃
Опционально: промыть 5 мл 3M HNO₃ / 0.05M щавелевой кислоты
Промыть 5 мл 8M HNO₃
Реэкстракция 10 мл 0.05M HNO₃

или

Выпаривание или осаждение
Пропорциональный счетчик
Аликвота для ICP-MS / AAS
Счетчик Черенкова и/или ЖСС

Подробная информация на: http://www.triskem-international.com/full_eichrom_methods.asp
Смола PB

Смола PB состоит из того же, краун-эфира, что содержится в смоле SR, однако разбавителем в ней является изодеканол.

Изодеканол, имеющий более длинную углеродную цепь, чем n-октанол, используется для облегчения регэкстракции свинца со смолы.

Смола PB обладает примерно такой же селективностью, что и смола SR, но величины k' в целом ниже, что позволяет облегчить регэкстракцию Pb. Смола PB обычно используется для определения Pb-210 в водных пробах.

Сродство свинца (k'_{Pb}) к смоле PB при концентрации HNO$_3$ от 10E-02 до 10E+01 М варируется в пределах от ~20 до 800 (рис. 12a). В среде HCl k'_{Pb} варируется в пределах от 20 до 100. Максимальное сродство наблюдается в 5.10E-02 – 2 М HCl. При более высоких и более низких концентрациях HCl сродство Pb к смоле быстро падает.

Одно- и двухзарядные катионы обладают сходными кривыми сорбции/элюирования, как и для смолы SR (рис. 12b - c).

Натрий и кальций не мешают поглощению свинца смолой PB при их концентрациях от 10E-02 до 1 М (рис. 13).

В присутствии калия до 1М свинец также поглощается смолой с k'_{Pb}~80. Из 0.1M HNO$_3$ большинство ионов смолой не поглощается; только Pd частично извлекается.

Реэкстракция свинца может быть осуществлена различными растворами, такими как 0.1М или 0.05M цитратом аммония, разбавленной лимонной кислотой, 0.1M оксалатом аммония, 0.1M глицином или водой [30].

Рис. 12a - c: Зависимости извлечения некоторых ионов металлов смолой PB от кислотности [30]

Рис. 13: Влияние мешающих ионов на k'_{Pb} на смоле PB в среде HNO$_3$ [30].

Область применения:
Определение Pb-210 в водных пробах
Выделение Pb-210 и Po-210 в водных пробых по методике Eichrom OTW01-20

Проба воды 0.5 – 1.5л

Добавить 10 мг Pb и Po-209 (рекомендуется) или Po-208

Корректировка pH до 2

Пропустить через колонку со смолой C-8 (10 г смолы на 500 пробы), кондиционированной 20 мл 0.1M HNO₃

Промыть 25 мл 0.1M HNO₃

Десорбция 50 мл 8M HNO₃

Упарить до суха, Упарить с конц. HNO₃ / H₂O₂

Растворить в 10 мл 2M HCl

Добавить 1 мл Fe(III) носителя (10 мг Fe/мл)

Нагреть

Медленно добавить 12 мл конц. NH₄OH для осаждения Fe(OH)₃

Нагревать, перемешивая

Отцентрифугировать и промыть осадок водой

Рекомендуемый вариант

Добавить 10 мг Pb и Po-209 (рекомендуется) или Po-208

Корректировка pH до 2

Пропустить через колонку со смолой C-8 (10 г смолы на 500 пробы), кондиционированной 20 мл 0.1M HNO₃

Промыть 25 мл 0.1M HNO₃

Десорбция 50 мл 8M HNO₃

Упарить до суха, Упарить с конц. HNO₃ / H₂O₂

Растворить в 10 мл 2M HCl

Добавить 1 мл 1M аскорбиновой кислоты

Пропустить через 2-мл колонку или картридж со смолой SR (рекомендуемая смола, но можно использовать смолу PB), кондиционированную 5 мл 8M HNO₃

Промыть 10 мл 2M HCl

Реэкстракция Ro: 5 мл 1M HNO₃, затем 15 мл 0.1M HNO₃

Реэкстракция Pb 10 мл 0.05M цитрата аммония

Осаждение PbSO₄

Аликвота для ICP-MS / AAS

Фракция Ro

Фракция Pb

Поместить серебряный (рекомендуется) или никелевый диск в раствор на подходящем держателе

Осаждать 8 – 18 ч (серебро), на никеле остановить через 4 ч

Промыв диски H₂O₂, этанолом

Добавить 185 мл 0.5M HCl и 100 мг аскорбиновой к-ты

Реэкстракция Pb 10 мл 0.05M цитрата аммония

Добавить 185 мл 0.5M HCl и 100 мг аскорбиновой к-ты

Пропорциональный счетчик

Альфа-спектрометрия

ЖСС
Смола DGA

Смола DGA – это ЭХ смола, основанная на экстрагентах либо N,N,N',N'-тетра-н-октилдигликоламид (DGA нормальная, сокращенно DN Resin, в литературе TODGA), либо N,N,N',N'-тетрацис-2-этилгексил-дигликоламид (DGA разветвленная, сокращенно DB Resin, в литературе TEHDGA) [13, 14].

На рис. 15 приведено сравнение k’ для Am(III) на нескольких ЭХ смолах. Видно, что смолы DGA обладают очень высокими k’ при высокой кислотности, однако америций можно легко рекстрагировать разбавленными растворами кислот. На рис. 16 приведено сравнение k’ для некоторых актиноидов на нормальной и разветвленной DGA.

Это в сочетании с устойчивостью смол DGA к мешающему влиянию Al(III), Fe(III) или Ti(IV) делает их интересным инструментом для определения Am в природных пробах, например, в методике последовательного выделения и определения актинидов в крупных пробах почвы и пищи.

Horwitz и др. показали, что катионы, образующие очень большие и слабые хлоридные анионы (напр. FeCl₄⁻) резко увеличивают удержание Am на смоле DGA (рис. 18). Этот эффект можно использовать для концентрирования Am (с остальными актинидами) из растворов выщелачивания повышенных объемов проб почв (100 г), тогда как большинство элементов матрицы проходят через смолы DGA, не экстрагируясь (рис. 17).

Кроме того, смола DGA может быть успешно использована для выделения актиния при исследовании объектов окружающей среды, в т.ч. при определении Ra-228, а также в радиофармацевтической промышленности, например, для выделения Ac-225 в технологии производства Bi-213.

Рис. 15: Сравнение величин k’ для Am на различных ЭХ смолах

Рис. 14: Экстрагент смолы DGA,
R = октил или этилгексил
Области применения:
Предварительное концентрирование актинидов из крупных почвенных и природных проб
Определение Am в крупных пробах почвы и пищи
Выделение Ac-225
Определение Ra-228

Рис. 16: Сравнение величин k' для различных актинидов на смолах DGA

Рис. 17: Предварительное концентрирование Am/Pu и удаление матрицы из выщелоченных проб почв

Рис. 18: Величины k' для различных металлов и концентраций HCl на нормальной DGA
Смолы AC и BE

Смолы AC и BE содержат в качестве экстрагента бис(2-этилгексил)метилдифосфоновую кислоту (H₂DEH[MDP], DIPEX*) [5,10].

Смола AC (в литературе также встречается под названием смола DIPEX*) используется, главным образом, для предварительного концентрирования и выделения актиноидов из кислых растворов, полученных из природных проб (растворы выщелачивания почв и большие объемы водных проб) [12].

В целом смола AC обладает более высоким сродством к актиноидам и, в частности, более высокой селективностью к америцию в сравнении с аналогичным ионитом Diphonix*. Это высокое сродство также используется для определения суммарной альфа-активности в пробах мочи и воды [4,5] с помощью жидкостнцинтилляционной спектрометрии.

Этот же экстрагент используется и в смоле BE. Смола BE применяется для выделения бериллия из природных и промышленных проб. Она используется для очистки Be от других элементов, которые могут помешать его определению на ICP-AES. Be сильно удерживается на смоле BE при pH от 1 до 2 и может быть рекстратрирован азотной кислотой с концентрацией более 1М.

Смола PREFILTER

Смола Prefilter – это гидрофильная макропористая смола, представляющая собой полимеракрилового эфира с большой удельной поверхностью и высокой емкостью к различным органическим соединениям.

Смола Prefilter используется, как правило, для удаления органических загрязнений из водных растворов, например, красящих реагентов во избежание квеничинг-эффекта в жидкостной сцинтилляции, или для удаления вымытых из колонки или картриджа экстрагентов, которые могут помешать электроосаждению.

Области применения:
- Определение суммарной альфа-активности в воде и моче
- Концентрирование актиноидов из природных проб
- Выделение Be для измерения методом ICP-AES

Область применения:
- Удаление органических загрязнений
Смола NI

Смола NI состоит из диметилглиоксима (сокращенно ДМГ), нанесенного на инертный носитель, и предназначена для отделения никеля от других элементов [17].

В отличие от экстракционно-хроматографических смол процесс сорбции основан на внутрипоровом осаждении никеля с диметилглиоксимом при pH = 8-9.

Осаждающийся розовый комплекс Ni(DMG)₂, очень стабильный и нерастворимый при данных условиях, удерживается в колонке.

Сорбцию никеля из пробы осуществляют в присутствии цитрата аммония для удержания в растворе таких элементов как Fe. После промывки цитратом аммония при pH 8-9 для удаления элементов матрицы и мешающих элементов, Ni можно десорбировать из колонки 3M раствором HNO₃. В табл. 3 приведены типичные коэффициенты очистки.

Радионуклид	Коэффициент очистки
Cr-51 | 3.5E+02
Mn-54 | 8E+03
Fe-55 | 4E+0.2
Co-58 | 1E+03
Co-60 | 1.1E+03
Nb-95 | 1.3E+02
Cs-134 | 2.8E+03
Cs-137 | 3E+03

Область применения:
Выделение Ni-63 и Ni-59 из водных, природных и дезактивационных проб.

Смола RE

Смола RE (Rare Earth, редкоземельные), как и смола TRU, состоит из КМФО, растворенного в ТБФ и нанесенного на инертный носитель. В случае смолы RE содержание КМФО выше, чем в случае смолы TRU, для увеличения селективности к редкоземельным элементам (РЗЭ).

Смола используется, в основном, для выделения группы РЗЭ, особенно тяжелых РЗЭ, среди элементов матрицы [18]. Смола является дополнением к смоле LN, которая используется для разделения лантаноидов.

Кроме того, смола RE используется для выделения и очистки изотопов Y, в т.ч. получения Y-90 для медицинских целей.

Области применения:
Определение РЗЭ пробах почв, воды и природных образцах
Выделение Y
Смола CL

Смола CL, используемая для разделения хлоридов и иодидов, особенно в контексте анализа Cl-36 и I-129, основана на экстракционной системе, селективной к платиноидам, золоту и серебру [20]. Селективность к галогенидам достигается за счет связанного со смолой Ag⁺ позволяющего получить хорошую селективность к анионам, особенно к галогенидам, образующим устойчивые или нерастворимые соединения с Ag. Поскольку смола удерживает Ag⁺ в широком диапазоне рН, она также позволяет извлекать хлорид и иодид при различных условиях (от слабощелочной до сильнокислой среды), в идеале – в восстановительной среде для их стабилизации в форме галогенидов.

После пропускания пробы и промывки смолы (удаление матрицы и мешающих элементов), хлорид легко может быть вымыт со смолы с помощью растворов SCN⁻, тогда как иодид остаётся на смоле. Затем иодид можно смыть со смолы раствором с высоким содержанием S²⁻.

Свойства смолы позволили Zulauf и др. разработать простую схему селективного выделения хлорида и иодида (рис. 22). Малые объемы элюатов (5 мл) позволяют непосредственно измерять полученные фракции на жидкостно-цинтилляционном спектрометре.

Warwick и др. [21] разработали метод анализа дезактивационных проб (напр. отработанных смол), основанный на термическом разложении анализируемой пробы в печи Raddec ‘Pyrolyser’. Летучие формы хлора переносятся потоком влажного воздуха в барботер, где они улавливаются 6 мМ раствором Na₂CO₃. Авторы модифицировали схему выделения так, что раствор из барботера можно непосредственно пропускать через колонку со смолой CL в Ag⁺-форме (рис. 23). Было также показано, что если проба не была сильнокислой, то может потребоваться дополнительная промывка смолы 5 мл 0,1M H₂SO₄ для увеличения очистки от С-14.

Nottoli и др. использовали смолу CL для определения I-129 в отработанных смолах методом AMS [31]. Вначале авторы подвергали смолу минерализации с помощью СВЧ-разложения или в кислородном автоклаве.

Яд очищали на смоле CL с помощью модифицированного метода очистки. Пробы подготавливали к измерению на AMS окислением сульфида до сульфата с помощью H₂O₂, осаждением сульфата бария с последующим центрифугированием и окончательным осаждением AgI.

Селективность смолы CL к благородным металлам делает ее перспективным инструментом для выделения и определения Ag и Pd, возможности которого изучаются в настоящее время.

Рис. 23: Схема разделения хлора / йода [21]

Область применения: Выделение Cl-36 и I-129 из водных, природных и дезактивационных проб.
Смола CU

Смола CU, используемая для выделения меди, основана на экстракционной системе, селективной к меди [22]. На рисунках 24 a-c отражено экстракционное поведение смолы CU по отношению к нескольким различным элементам в зависимости от кислотности в трех разных кислотах. В целом смола обладает высокой селективностью к меди на фоне всех испытанных катионов, включая Ni и Zn. Медь экстрагируется очень эффективно при значениях pH более 2, тогда как она может быть легко рекстрагирована минеральными кислотами с повышенной концентрацией. Кроме того, смола очень устойчива по отношению к мешающему влиянию повышенных количеств Zn и Ni; даже при соотношении 1 г Ni или Zn на г используемой смолы CU D_w(Cu) остается более 1000.

Простой и быстрый метод выделения Cu из облученных мишеней был разработан Dirks и др. [22, 23]. Метод позволяет получить Cu высокой чистоты в очень малом объеме (1 – 1.5 мл) менее, чем за 10 мин при использовании вакуумной системы (рис. 25). Также было показано, что Cu можно концентрировать и выделять из других насыщенных проб, таких как морская вода [23] (рис. 26).

Области применения:
Выделение Cu-64/67 из облученных мишеней
Концентрирование и выделение Cu из природных матриц
Очистка материалов мишеней
Серия смол LN

Смолы LN содержат диалкил фосфорную (LN), фосфоновую (LN2) или фосфиновую (LN3) кислоту [19], кислотность нанесенных экстрагентов убывает в ряду LN>LN2>LN3. Эта разница в кислотности влияет на экстракционное поведение смол.

Смоля LN находит применение в методике определения Ra-226 и Ra-228 в природных пробах и при разделении лантаноидов. В последнем случае она часто применяется в сочетании со смолой RE, которая используется для концентрирования лантаноидов и удаления части матрицы.

Помимо смолы LN, TrisKem также предлагает смолы LN2, которая используется для разделения тяжелых лантаноидов (напр., выделение Lu-177 из облученного Yb-176), и LN3, используемую для разделения лантаноидов и отделения Zn от Co.

На рис. 28 приведено сравнение относительной селективности смол к лантаноидам (нормировано на k'La/LN2 = 1)

На рис. 29 представлены величины k’ некоторых катионов на трех смолах.

Области применения:
Ra-226 и Ra-228 в водных пробах
Разделение лантаноидов

Рис. 27: Экстрагенты, используемые в серии смол LN

Рис. 28: Относительные величины k’, нормированные на удержание La на смоле LN2 (k’La/LN2 = 1)

Рис. 29: Коэффициент удерживания k’ различных катионов в HNO₃ на смолах LN / LN2 / LN3.
Смола WBEC

Смола WBEC (слабоосновная экстракционно-хроматографическая) содержит смесь четвертичных октил- и дециламинов, известную также под названием Alamine® 336. В основном, она применяется для выделения Tc и Pu(IV) [32].

В целом, смола WBEC обладает интересной селективностью к Tc, Pu и в определенной степени к четырехвалентным актинидам; таким образом, ее селективность в известной степени аналогична смоле TEVA, однако величины k', в целом, существенно ниже.

В целом, реэкстракция аналитов протекает легче. Pu можно реэкстрагировать 1М или даже чуть более концентрированной HCl [32], а Tc – 1М NH₄OH [32], что отражено на рис. 31.

Табл. 4: Состав Alamine® 336 [32]

<table>
<thead>
<tr>
<th>Амин</th>
<th>отн. содерж./ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₁₀H₂₁)_2N</td>
<td>27</td>
</tr>
<tr>
<td>(C₈H₁₇)_3N</td>
<td>47</td>
</tr>
<tr>
<td>(C₁₀H₂₁)(C₈H₁₇)₂N</td>
<td>27</td>
</tr>
<tr>
<td>(C₈H₁₇)₂N</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Рис. 30: Кривые элюирования при разделении U/Tc

Рис. 31: Зависимости экстракции некоторых элементов смолой WBEC от кислотности
ИОНООБМЕННЫЕ СМОЛЫ

Аниониты и катиониты для аналитических задач

TrisKem предлагает расширяющуюся номенклатуру катионитов и анионитов, очищенных для применения в анализе. Наши ионообменные смолы аналитической чистоты проходят очистку путем последовательной промывки метанолом, NaOH и HCl для удаления следов органики, остающейся при производстве, что позволяет получить для Вас высококачественный продукт. Линия катионитов – это сильнокислые катиониты типа 50W (с катионо-обменными сульфогруппами на гранулированном сополимере стирола и дивинилбензола). Доступны смолы с 4% и 8% содержанием ДВБ. Все катиониты поставляются в водородной форме, фракции сухого материала: 50 – 100, 100 – 200 и 200 – 400 меш.

Линия анионитов – это сильноосновные аниониты типа 1 (функциональные группировки – четвертичные амины на гранулированном сополимере стирола и дивинилбензола). Доступны смолы с содержанием ДВБ 4% и 8% с крупностью частиц 50 – 100, 100 – 200 и 200 – 400 меш. Все смолы поставляются в хлоридной форме.

Смолы Diphonix, Diphosil and Monophos

Смола Diphonix состоит из полимерного носителя, содержащего функциональные группировки дифос-фоновой и сульфоновой кислот [24] (fig. 32).

Смола Diphonix способна извлекать актиноиды в степенях окисления +3, +4 и +6. В то же время, остальные катионы, частоприсутствующие в природных пробах (например, Ca и Fe(II)), поглощаются плохо, поэтому смола используется для концентрирования актиноидов из выщелоченных проб почв [25].

Смола Diphonix часто находит применение в крупномасштабных производствах. При этом она наиболее часто применяется для контроля концентрации Fe(III) в электролитах Cu, Ni и Co при электрорафинировании [26].

Другими областями применения являются извлечение урана из жидких радиоактивных отходов [27] и удаление Mn из водопроводной воды.

Смола Diphosil® основана на группировках дифосфоновой кислоты, привитых на гранулы силикагеля для увеличения радиационной стойкости.

Смола Monophos, как и Diphonix, основана на носителе из сополимера стирола и дивинилбензола; отличие состоит в том, что на полимерный носитель привиты группировки монофосфоновой кислоты вместо группировок дифосфоновой кислоты (рис. 33).

Области применения:
Концентрирование и удаление актиноидов
Удаление Fe(III) из электролизных растворов Cu
Смола Cs

Смолы AMP-PAN и KNiF-PAN были также разработаны Dr. Šebesta. Как и смола MnO\textsubscript{2}-PAN, обе эти смолы основаны на дисперсных селективных неорганических веществах, внедренных в органическую матрицу на основе полиакрилонитрила (PAN) для улучшения их механических свойств. Активными компонентами являются широко используемый фосфорномолибдат аммония (также молибдофосфат аммония, AMP) гексацианоферрат (II) никеля-калия (также ферроцианид никеля-калия, KNiFC). Обе смолы предназначены для концентрирования и выделения Cs из различных жидких проб.

Фосфорномолибдат аммония, неорганический ионообменник, на котором основана смола AMP-PAN, хорошо известен своей высокой специфичностью к Cs даже при повышенных концентрациях кислот, быстрой кинетикой и радиационной стойкостью [33]. Высокая селективность к Cs даже в жестких химических условиях и при высоких концентрациях кислот делают смолу AMP-PAN пригодной для переработки жидких радиоактивных отходов.

Brewer и др. [34] испытали смолу для извлечения Cs-137 из реальных и модельных кислых высокоактивных радиоактивных отходов с высоким содержанием калия и натрия. Устойчивость AMP-PAN к высоким концентрациям солей делает эту смолу привлекательной для анализа природных проб, особенно для анализа Cs-134/7 в морской воде.

Kamenik и др. [35] испытали AMP-PAN и KNiFC-PAN для анализа Cs-134/7 в пробах морской воды. Авторы пропускали 100-л пробы закисленной морской воды (в случае KNiFC-PAN стем же успехом были испытаны незакисленные пробы) через 25-мл колонки со смолами AMP-PAN или KNiFC-PAN со скоростями до 300 мл/мин, что позволяет обработать 100-л пробы менее, чем за 6 часов. К пробам морской воды добавляли стабильный Cs для определения выхода с помощью ICP-MS. После пропускания проб смолы извлекали из колонок, сушили и измеряли на гамма-спектрометре в геометрии чашки Петри. В целом, химические выходы высоки (>90%); для KNiFC-PAN и закисленной морской воды характерны несколько более высокие выходы, чем для AMP-PAN, а выходы для закисленной и незакисленной морской воды сопоставимы.

Для обработки незакисленной морской воды на смоле KNiFC-PAN были испытаны более высокие скорости пропускания; показано, что даже при скорости 470 мл/мин выход по Cs составляет более 85%. Смолу KNiFC-PAN также использовали для определения изотопов Cs в молоке [36] и моче [37].
Колонки Tritium

Колонки Tritium (колонки H3) используются для выделения и количественного определения трития в качестве альтернативы прямому измерению или измерению после дистилляции [17]. Поскольку колонки не концентрируют тритий, они могут быть использованы только тогда, когда предел обнаружения достигается при измерении пробы объемом 5–10 мл. Свободный тритий проходит через колонку, тогда как остальные элементы из матрицы сорбируются на трех компонентах колонки Tritium.

Смола Diphonix обменивает катионы на протоны; ее теоретическая емкость составляет 0,8 мг-экв. на колонку. Анионит 1X8 (Cl- форма) поглощает анионы, мешающие количественному определению трития. Ее теоретическая емкость составляет 0,8 мг-экв. на колонку. Рекомендуется использовать ее при pH > 1. Смола Prefilter используется для удаления следов органических загрязнений. Ее теоретическая емкость составляет 50 мг на колонку.

Смола MnO₂

Анализ изотопов Ra в водных пробах приобретает всё большее значение. Чтобы удовлетворить существующие требования по пределам обнаружения, особенно для Ra-228, для анализа приходится использовать большие объёмы проб. Смола MnO₂ позволяет эффективно концентрировать изотопы Ra из водных проб, питьевой и морской воды. В настоящее время смола MnO₂ используется вместе со смолями LN и DGA, Normal в методе, разработанном Шерродом Маквеллом, Westinghouse Savannah River [16]. В данном методе Ra предварительно концентрируют из водных проб объёмом 1 – 1,5 л, используя смолу MnO₂ в количестве 1,25 г смолы на 1 л пробы. После этого Ra элюируют и загружают в смолу DGA Normal (удержание / отделение Ac-228) как минимум на 36 часов для накопления Ac-228. Ac-228 элюируют из смолы DGA, микросоосаждают с CeF₃ и измеряют с помощью GPC; осажденный источник может быть использован для гравиметрического определения выхода. Ra-226 может быть определен непосредственно, либо после дополнительной очистки на смоле LN Resin, микросоосаждения с BaSO₄ и альфа-спектрометрии.

TrisKem Int. предлагает смолу MnO₂-PAN (смолу G2), разработанную Dr. Šebesta [33] из Чешского Технического Университета в Праге. Она состоит из очень мелких частиц MnO₂, нанесенных на связующий полимер из модифицированного полиакрилонитрила (PAN). Смола MnO₂ очень стабильна и обладает развитой поверхностью.
Выделение Ra-226/8 водных пробах, изменённая версия методики Eichrom RAW04-10

Подготовка раствора к сорбции pH = 7, добавить Ba-133
2 г MnO₂-PAN (100-300 мкм), подготовка 10 мл H₂O
Промыть 10 мл H₂O
Десорбция Ra 15 мл 5M HCl

Определение Ra-228 требуется

Выдержать пробу в течение >30 часов
Добавить 100мкл Се носителя для определения Ac-228

Пропустить раствор через 2-мл картридж 2 со смолой DGA,N
Промыть 5 мл 5M HCl
Промыть 2x5мл 5M HCl
Десорбция Ac-228 15мл 2M HCl
Отобрать аликвоту для ИСП-МС
Микроосаждение для ГПС или прямое измерение на счетчике Черенкова

Определение Ra-228 требуется

Собрать элюат и промывной раствор (содержит Ra & Ba)
Упарить до 2-3 мл
Добавить 7-8 мл H₂O
Гамма-спектрометрия (определение выхода по Ba-133)

Определение Ra-228 не требуется

Ra: Добавить 3мл конц. HCl + 3г (NH₄)SO₄ + 50мкг Ba + 5мл изопропанола. Остудить льдом в течение 30 минут, отфильтровать
Альфа-спектрометрия

Подробная информация на: http://www.triskem-international.com/full_eichrom_methods.asp
Диски Nucfilm

Недавние улучшения в синтезе тонких пленок MnO₂, основанные на работах Dr. Heinz Surbeck (Nucfilm GmbH), сегодня позволяют наносить селективно сорбирующие тонкие пленки MnO₂ на поверхность полипропиленового диска [28]. Эти нанесенные субстраты доступны в виде Ra NucfilmDiscs. Благодаря их высокой селективности к Ra, диски позволяют непосредственно определять изотопы Ra в водных пробах, не прибегая к дополнительным методам радиохимического разделения.

Рис. 36: Альфа-спектр радия, адсорбированного на тонкой пленке из минеральной воды Portuguese.

Диски контактируют с необработанной пробой воды (pH 4 – 8, типичный объем = 100 мл) при перемешивании в течение 6 ч. При данных условиях степень извлечения Ra, как правило, составляет более 90%. Затем высушенный диск может быть измерен с помощью твердотельного альфа-детектора. Разрешение по энергии у полученных образцов очень хорошее, что показано на рис. 36., обычно достигается полуширина пика порядка 30 - 40 кэВ. При анализе 100 мл пробы (время измерения t = 80000 с, 900 мм² Si-детектор при 10 мм расстоянии) обычно достигается предел обнаружения 5 мБк/л для Ra-226.

Область применения:
Определение Ra-226/8 в водных пробах

Фильтры Resolve™

Обычные фильтры производят в соответствии с требованиями к удалению частиц для достижения необходимой чистоты раствора.

Например, фильтр с размером пор 0,1 мкм обычно способен удалить из жидкости 99,98% частиц размером 0,1 мкм. Однако поры, присутствующие на поверхности, могут быть заметно больше или меньше, чем 0,1 мкм. Для максимального разрешения в альфа-спектрометрии требуется хорошая однородность поверхности фильтра для однородного распределения осадка фторида РЭЭ. Линия фильтров Resolve™ компании TrisKem (0,1 мкм полипропилен, диаметр 25 мм) изготовлены в соответствии с требованиями к приготовлению альфа-источников для получения альфа-спектров с высоким разрешением.

Фильтры Resolve® 25-мм доступны также в виде фильтровальных воронок для вакуумной системы.

Диски для приготовления альфа-источников

TrisKem предлагает диски из нержавеющей стали для приготовления источников ектросаждением. Кроме того, в наличии серебряные и никелевые диски, а также наборы для автоосаждения для приготовления источников при определении полония.
Вакуумный бокс и аксессуары

Установки для разделения под вакуумом, основанные на вакуумном боксе и картриджах, становятся всё более популярными. TrisKem предлагает вакуумные боксы на 12 и 24 позиции, пустые 2- и 10-мл картриджи, сопутствующие аксессуары, такие как резервуары, вентили для регулировки расхода и запасные части для вакуумного бокса.

Аксессуары для колонок

Для того, чтобы позволить нашим пользователям загружать колонки самостоятельно, TrisKem предлагает пустые колонки на 2, 5 и 20 мл. Также мы предлагаем воронки (на 20 мл для 2-мл колонок и на 250 мл для 5-20-мл колонок) и штативы (для 2-мл и 5-20-мл колонок) для пустых и готовых колонок.

Эталоны и расходные материалы для ICP-MS

Теперь TrisKem также поставляет регистрируемые одно- и многоэлементные эталоны для ICP-MS, ICP-AES и AAS, а также кварцевые изделия для ICP-MS.

Кроме того, мы предлагаем лабораторное оборудование и расходные материалы (стаканы, фильтровальные установки, фильтры,...), необходимые для проведения Вашего анализа.
Системы Pyrolyser для нескольких проб – это специализированные эффективные печи для сжигания проб, разработанные для выделения летучих нуклидов, в том числе суммарного трития, C-14, Cl-36 и I-129.

В данной системе могут быть обработаны пробы практически любого типа (например, металл, бетонные конструкции и цемент из биологической защиты, биота, почва, осадки, пластик, асбест, графит). Система разработана для решения исследовательских, регулятивных и дезактивационных задач и используется в ядерных, исследовательских, оборонных и промышленных лабораториях Великобритании и всего мира.

Система разработана практикующими радиохимиками на основе их длительного опыта измерений радиоактивности в природных и дезактивационных пробах.

Система Pyrolyser для нескольких проб ПОЛНОСТЬЮ ИНТЕГРИРОВАНА в один компактный прибор. Каждая система включает в себя контролируемый нагрев, измеряемый расход воздуха и кислорода, зону каталитического окисления и цепь барботеров для извлечения и количественного улавливания продуктов разложения полностью окисленной пробы. Одновременно может быть обработано до 6 проб за время от двух часов.

Примеры проб, которые могут быть обработаны с помощью RADDEC Pyroliser:

1) Природные пробы: почва/осадки, фрукты, вода, трава, молоко, рыба, ил и т.д.

2) Дезактивационные пробы: цемент, кирпич, асбест, искусственные минеральные волокно, металл, пластик, осушители, бумага, электропроводка, канализационные осадки, графит, краска, масло и т.д.
ОБЛАСТИ ПРИМЕНЕНИЯ

РАДИОХИМИЧЕСКИЙ АНАЛИЗ

Экстракционно-хроматографические смолы позволяют выделять радионуклиды (например, актиноиды и продукты деления) из различных проб и матриц (природные, дезактивационные и биологические пробы, а также радиоактивные отходы). Наши продукция является стандартной технологией в радиохимии, используемой международными аккредитованными лабораториями и мониторинговыми агентствами. На нашем сайте имеется значительное количество аналитических методик, готовых к использованию.

ПРОИЗВОДСТВО РАДИОНУКЛИДОВ

Высокая селективность экстракционно-хроматографических смол TrisKem делает их идеальным инструментом для разделительных операций в производстве радионуклидов. Примеры успешного применения смол включают производство Ac-225, Lu-177 и In-111. Кроме того, наши смолы находят применение в контроле качества радионуклидов, очистке материала мишений и дополнительной очистке генераторных радионуклидов.

АНАЛИЗ МЕТАЛЛОВ

Опыт TrisKem в выделении элементов, а также разнообразие селективных смол позволяет решать многие проблемные аналитические задачи через пробоподготовку. Пользуясь широким выбором продукции и длительным опытом TrisKem может помочь Вам достичь более низких пределов обнаружения с меньшей погрешностью. Часто проблема, с которой сталкиваются аналитики связана с удалением матрицы, которая мешает инструментальному измерению. В качестве примера можно привести ICP-MS: в данном методе часто приходится устранять изобарические помехи для того, чтобы добиться правильности определения Вашего аналита. В таких случаях важна селективность к интересующему анализу. Экстракционная хроматография уже сегодня находит применение в различных областях анализа, в том числе при определении изотопного состава Sr, в геохронологии (напр. U/Pb) и при определении Pb и Be в сложных матрицах.

СОВМЕСТНЫЕ ИННОВАЦИИ

Команда TrisKem International постоянно совершенствует существующую продукцию и ее применение, а также разрабатывает новую продукцию для радиационной защиты, радиоанализа и радиофармацевтики. Мы также планируем расширить текущую деятельность в области экологического мониторинга и включать в наши проекты научно-исследовательских и опытно-конструкторских разработок (НИОКР) развитие новых технологий разделения и определения загрязнителей окружающей среды. Если у Вас есть какие-либо особенные потребности в разделении, если Вы желаете принять участие в проекте R&D или если Вы ищете партнера для коммерциализации новой технологии, пожалуйста, свяжитесь с нами по телефону +33 2 99 05 00 09 или электронной почте (shappel@triskem.fr, tsemenova@triskem.fr).
[26] Shaw D.R. et al., JOM, July 2004, 38 – 42
[34] Brewer et al. (1999). Czechoslov J Phys 49(S1):959-964
[37] Bartuskova et al. (2007) Ingestion doses for a group with higher intake of Cs-137.IRPA regional congress for Central and Eastern Europe, Brasov, Romania
Ваш надёжный партнёр в радиохимическом анализе

Экстракционно-хроматографические смолы

Катиониты и аниониты аналитической чистоты

Стандартные методики Особые задачи

Эксклюзивный дистрибьютор в России
annaz@acrus.ru; sales@acrus.ru