Investigation of the AMP-PAN resin for determination of ¹³⁷Cs in sea water samples

TrisKem International vUGM meeting, 24/11/20

Mirela Vasile¹, K. Smits¹, L. Verheyen¹,

L. Sneyers¹, M. Bruggeman¹, A. Bombard²

¹Belgian Nuclear Research Centre, SCK CEN, Mol ²TrisKem International

mvasile@sckcen.be

SCK CEN/41021104

ISC: Restricted

Context – 3

AMP co-precipitation – 5

AMP-PAN resin – 6

Conclusions and – 16

perspectives

Context

Radioactivity determination in different types of samples

Recredited techniques (ISO 17025)

- ✓ Air filters
- ✓ Water samples (drinking, rain, river, sea)
- ✓ Soil and Sediment
- Milk
- ✓ Vegetables, Meat, Fish
- Shellfish
- ✓ Water plants
- ✓ Biological samples

scl: cen | SCK CEN/41021104

AMP co-precipitation method

- High amount of water (40 60 L)
- Time consuming sampling

- Laborious sample preparation
- In total it takes almost one week
- Complicated transport and sample treatment

AMP-PAN resin: what it is?

- Ammonium MolybdoPhosphate, AMP, "embedded in an organic matrix based on polyacrylnitrile (PAN) in order to improve the mechanical characteristics" (product sheet – Cs resins)
- "Concentration and separation of Cesium" (product sheet Cs resins)
- Capacity : 11 mg Cs/ml AMP-PAN resin
- Type of samples (product sheet Cs resins):
 ✓ Acidified/non-acidified sea water
 - ✓ Liquid radioactive waste

AMP-PAN resin – how we use it

Simple set-up:

- peristaltic pomp
- sample and waste containers
- AMP-PAN resin column
- no supervision needed (once started)

Measurements

HPGe detectors

- Calibrated for homogeneous samples (using efficiency transfer computations for variations in geometry, density)
- Spectrum analysis by Genie 2000 (Mirrion) including background correction, summing correction (¹³⁴Cs), interference corrections (nuclide library)

✓ Low background

SCK CEN/41021104

AMP-PAN results

2.4 L sea water sample

- \checkmark **pH < 2** with HNO₃
- ✓ **5 L/h** (by mistake) flow rate

- Underestimated results directly measuring the 20 ml column
- Slightly overestimation of the activity using 5 ml column

sck cen

AMP-PAN results: inhomogeneity of activity concentration in cartridge

- ✓ vertical scan with collimated HPGe detector
- ✓ scan made by measuring at **3**
 - positions along the axis of the

cartridge

 ✓ Counts in the ¹³⁷Cs gamma peak reflect the concentration in the cartridge

Measurement after transferring cartridge content to measurement vial and homogenization

✓ measurements in the vial in goodagreement with the spiked value

✓ good results independent of particle size

✓ good results even using 5 L/h flow rate

 ✓ non-acidified samples slightly lower results – but maybe only due to the transfer of the sample some resin was still in the column?

AMP-PAN results: acidification vs non-acidification

sck cen

SCK CEN/41021104

- 14 L sea water
- 10 mBq/L
- only one sample per result
- lower recovery for nonacidified sample (and 20 ml column)
- Iower recoveries using 5 ml column –we have to investigate the reason (fresh results)
- repeatability needs to be investigated

Results: AMP-PAN resin vs co-precipitation

Parameter	Classic AMP	AMP-PAN resin (20 ml column – 100-600 µm)	✓ real samples – North Sea wate
Volume sample (L) sea water	40	14	✓ apply both methods
Final high of sample (mm)	~100	16 – 20	
Flow rate (L/h)	-	2.5	
Time of the procedure	4-5 days	6 hours	
Counting time	Over week-end	Over week-end	
Detection Limit (mBq/L)	2	1.8	Good agreement of the results

Comparison of measurement geometry

Co-precipitation

Detection limits

versus

 average source-detector distance larger
 ✓ lower detection efficiency
 ✓ higher detection limit

AMP-PAN resin

- average source-detector distance shorter
 - ✓ higher detection efficiency
 - Iower detection limit

AMP-PAN resin vs direct measurement

Good agreement of the results

sck cen

Conclusions and Perspectives

Conclusions

Using AMP-PAN resin:

- ✓ Faster and easier method (few hours comparing with few days)
- ✓ Good recoveries (~100 % for 20 ml column)
 - the 5 ml column needs to be investigated further
- ✓ Good agreements with the classical method

Perspectives

□ Implementation in the routine analyses and replace the classical method

Validation of the procedure

- ✓ decide on the type of column (20 or 5 ml pre-packed columns)
- ✓ decide if the sample should be acidified or not
- ✓ reproducibility and repeatability

✓ in-situ treatment of sample avoiding transport of huge amounts of sample material

Taken from: https://odnature.naturalsciences.be/belgica/nl/image-gallery

Thank you for your attention!

Copyright © SCK CEN - 2020

All property rights and copyright are reserved.

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.

If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

> Foundation of Public Utility Stichting van Openbaar Nut Fondation d'Utilité Publique

Registered Office: Avenue Herrmann-Debrouxlaan 40 - 1160 BRUSSELS - Belgium

Research Centres:

Boeretang 200 - 2400 MOL - Belgium Chemin du Cyclotron 6 - 1348 Ottignies-Louvain-la-Neuve - Belgium