Production and Purification of Titanium-45 for Positron Emission Tomography Imaging

Presented by: Karla Olguin

Supervisors: Caterina Ramogida & Valery Radchenko

Simon Fraser University

TRISKEM International

Cancer Diagnostic

Impact of Early Detection

Radiopharmaceuticals

PET Radionuclides

Project's Premise

TRIUMF Memo LS126, TRIUMF, 2018.

Scandium Target

Activation of Nucleus and Radioactive Decay

Schmitz, R. E. et al. "The Physics of PET / CT scanners." (2013).

J Chromatogr A. 2016 Dec 16;1477:3946

ZR Product Sheet, TRISKEM, 2017.

Results from Fraction Collection

Experiments' results

	(Decay Corrected) Recovered Ti-45 (MBq)			
· · · · · · · · · · · · · · · · · · ·	Run #	Crude	Purified	Recovery %
Runs 6 - 7:	6	1197.18	956.81	80%
-Question where	7	716.50	452.04	63%
the remaining ⁴⁵ Ti • go	8	1213.55	-	-
- ⁴⁵ Ti loses at Load	9	1008.53	994.92	99%
and Wash stage	10	581.43	604.41	104%
-Amount of resin used doubled	11	532.14	498.10	94%
- ⁴⁴ Sc spikes of	12	472.18	443.93	94%
known activity on	13	532.35	467.26	88%
target purification	14	495.91	231.73	47%
process (no ⁴⁵ Ti activity)	15	522.57	467.34	89%
l	16	499.41	484.21	97%
×	17	497.60	313.85	63%
	18	596.87	344.70	58%

First Experiments:

-Experiments 1-5 were not adequately measured with the right calibration number

Latest Experiments:				
-Implementation of a syringe				
pump to regulate flow rate:				
Run 6: 0.300 ml/min				
Run 7: 0.100 ml/min				
-Duplicate samples taken from				
total Load and Wash stages				
-Amount of ZR resin used went				
back to 100 mg				

Production of 45 Ti from 45 Sc was achieved through irradiation of 45 Sc target for 10 min at 10 μ A

Production rates of ⁴⁵Ti activity seemed to closely match theoretical values at the beginning

Sc/Ti separation was possible, obtaining no ⁴⁴Sc mesurable but ICP-MS will be done for validation

⁴⁵Ti recovery was optimized from 65% to 99%, more runs will be performed using the last flow rate used (0.100 ml/min)

Future Steps

Short-Term Goals

Replicate experiment 3 times more using the same conditions and parameters from best recovery results **Medium-Term Goals**

Design and define an automated system for the purification process

Standardize Process

Long-Term Goals

Define a potential chelator to bind with ⁴⁵Ti

Perform radiolabeling studies

In vitro studies / In vivo studies

Academic Progress

BSc Chemical Engineering
Contributed to 2 research academic publications

MsC Chemistry

- Research project on inorganic chemistry applied to nuclear medicine
- Mitacs' Graduate Fellowship
- SFU Graduate Fellowship (Summer 2020)
- Teacher Assistant (Fall 2019)
- CHEM849 Special Topics in Analytical Chemistry (Fall 2019)
- CHEM842 Special Topics in Radiochemistry (Spring 2020)

SIMON FRASER UNIVERSITY

Acknowledgements

Thank you

- Supervisors: Caterina Ramogida & Valery Radchenko
- Committee members: Dr. Ramogida, Dr. Radchenko, & Dr. Andreoiu
- TRISKEM