

Virtual Conference on Applied Radiation Metrology (vCARM) 2021

Determination of ³⁶Cl and ¹²⁹l in nuclear solid decommissioning samples

Our challenges: ³⁶Cl memory effect and how to deal with it?

Inés Llopart Babot^{1,2,3}, M. Vasile¹, A. Dobney¹, S. Boden¹, M. Bruggeman¹, M. Leermakers², J.

Qiao³, P. Warwick⁴

¹Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium

² Vrije Universiteit Brussel, VUB, Brussels, Belgium

³ Technical University of Denmark, DTU, Lyngby, Denmark

⁴ GAU-Radioanalytical, University of Southampton, Southampton, UK

sck cen

sck cen

SCK CEN/46145464

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method
- 6. Detection limit (DL)
- 7. Conclusions and further work

SCICCEN/46145464

Contents

1. Framework

- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method
- 6. Detection limit (DL)
- 7. Conclusions and further work

Decommissioning phase of a nuclear facility

Radiological waste characterization

Measurement of the waste

³⁶Cl and ¹²⁹I in decommissioning scenarios

Significant in terms of *half-life* and *environmental mobility for* final waste disposal

129

- □ Neutron activation natural ³⁵Cl
- □ T_{1/2}= 3.02 10⁵ year
- □ E_{max}= 709.6 keV
- In construction materials (as trace element) and in the primary circuit coolant

□ Fission product ²³⁵U

- $\Box T_{1/2} = 1.57 \cdot 10^7$ year
- \Box E_{max}= 154 keV
- In spent nuclear fuel and in the primary cooling circuit of a nuclear reactor

SCICCEN/46145464

Contents

1. Framework

2. Aim of the study

- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method
- 6. Detection limit (DL)
- 7. Conclusions and further work

General and specific aims

 To optimize the quantification of ³⁶Cl and ¹²⁹l in solid samples coming from decommissioning scenarios

CURRENT ISSUES

- 个 DL
- Turn around time (TAT) \uparrow
- Chemicals needed \uparrow

APPLICATION FOR

- Improving radiological characterization
- Reaching low DL to comply with exemption and clearance principles
- Including of the procedure in routine analysis

SCICCEN/46145464

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method
- 6. Detection limit (DL)
- 7. Conclusions and further work

Step by step

1. Sample combustion

Pyrolyser

SCK CEN/46145464

sckcen

Counting (LSC)

1. Combustion

• Pyrolyser from RADDEC is used (procedure adapted from *Warwick et al. 2010*)

CI

P	Temperature protocols depending on the matrix		
	Maximum temperature: 900°C		Fully Cl release
	Flow rate: 20	0 mL/min	Carry gases
	No catalyst/quart beads		Flow rate regulation
	Glass connections and quartz tubes and sample boats		Avoid plastic surfaces
and I carriers $\rightarrow \eta$ quantification		Running blank samples after active samples	

3. Sample measurement

Massic activity

Chemical recovery

Optimization of the procedure

COMBUSTION

- Temperature protocol
- Holding time at maximum temperature
- Amount of the sample
- Memory effect

sck cen

SCK CEN/46145464

SEPARATION

- Compatibility with different media
- Cleaning steps

³⁶Cl contamination in the blanks

¹²⁹I no contamination in the blanks

MEASUREMENT

- Counting efficiency calibration
- Homogeneity and stability

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up

4. How to deal with ³⁶Cl memory effect?

- 5. Application of the method
- 6. Detection limit (DL)
- 7. Conclusions and further work

Cross-contamination / memory effect?

- Cross contamination on the vacuum box
 - Blanks + spiked samples
 - Blanks in a different vacuum box
- Memory effect

sck cen

SCK CEN/46145464

No cross-contamination

Quartz wool / beads?

- ↓ CPM when removing quartz wool and quartz beads
- Not possible to remove completely the effect
- Chemical recoveries not significantly affected

Moist air?

- No differences in CPM while removing the moist air
- Moist air was not affecting ³⁶Cl memory effect
- No significant differences on the chemical recovery

Sample boat?

- ↓ CPM when changing the sample boat
- Not possible to remove completely the effect

Ageing of the sample boats

(Peng and Redfern 2013)

- Variations of quartz structure while ↑ temperature ↑ CPM while reusing the sample boat
- Memory effect ↑ when > 20 times used
- Chemical recovery affected for the reuse

• Extra cleaning steps cannot avoid the memory effect

 Reasonable background level between 8-13 CPM

Average

SCI: CEN | SCK CEN/46145464

Catalyst used in other set-ups

• In some cases catalyst is needed (depending on the matrix and radionuclides) for **different reactions** of the target elements (*Prabir Basu 3rd edition 2018*)

- In some cases catalyst **cannot** be removed \rightarrow included in the pyrolyser set-up
 - Horizontal Split tube furnaces up to 1100 °C (ENTECH 1918)

Approach

SCI: CEN | SCK CEN/46145464

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?

5. Application of the method

- 6. Detection limit (DL)
- 7. Conclusions and further work

SCI: CEN | SCK CEN/46145464

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method

6. Detection limit (DL)

7. Conclusions and further work

Calculation of the detection limit (DL)

- Evaluated based on measurements of several blanks (non-spiked solid samples)
- Calculated according to ISO 11929

Considering ³⁶Cl memory effect

SCI: CEN | SCK CEN/46145464

Contents

- 1. Framework
- 2. Aim of the study
- 3. Experimental set-up
- 4. How to deal with ³⁶Cl memory effect?
- 5. Application of the method
- 6. Detection limit (DL)

7. Conclusions and further work

30

Conclusions

- Optimized procedure can be applied to the analyses of **real samples**
- Optimized procedure can reach the **required limits** by the legislation for ³⁶Cl
- Catalyst is not needed in this set-up reducing the issues with ³⁶Cl memory effect
- Blanks are required after running an active sample (memory effect evaluation)

Further work

- Investigation of the application to Plastic Scintillating Microspheres (PSm) for ³⁶Cl determination
- Improvement of iodine quantification in order to reach the limits required by the legislation of ¹²⁹I free release

Interlaboratory comparisons and availability of reference materials for these radionuclides **are needed**

Virtual Conference on Applied Radiation Metrology (vCARM) 2021

THANK YOU VERY MUCH FOR YOUR ATTENTION!

For further questions do not hesitate to contact me by email ines.llopart@sckcen.be

Copyright © SCK CEN - 2021

All property rights and copyright are reserved.

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.

If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

> Foundation of Public Utility Stichting van Openbaar Nut Fondation d'Utilité Publique

Registered Office: Avenue Herrmann-Debrouxlaan 40 - 1160 BRUSSELS - Belgium

Research Centres:

Boeretang 200 - 2400 MOL - Belgium Chemin du Cyclotron 6 - 1348 Ottignies-Louvain-la-Neuve - Belgium