

Applications of novel resins for Technetium separation

from environmental and target samples

Ben Russell, Ross Allen, Hibaaq Mohamud, Elsje van Es, Frankie Falksohn, Yasmin Yu, Peter Ivanov Triskem User Group Meeting

Virtual Conference on Applied Radiation Metrology (vCARM)

24th November 2021

Motivation for ⁹⁹Tc measurement

- High yield fission product
 - ²³⁵U thermal yield: 6.132(92) %
- Long lived radionuclide
 - T_{1/2}: 2.111(12) x 10⁵y
- Environmental concern
 - Forms mobile ions: Tc(VII)O⁴⁻
 - Sellafield (UK) has discharged 1720 TBq over the period of 1952-2008
- Complex analysis
 - Beta emitter
 - Separation from interferences required
- Analysis Techniques
 - Liquid Scintillation Counting
 - Inductively Coupled Plasma Mass Spectrometry

5.4	Source	⁹⁹ Tc release				
Reference	Source	(TBq)				
Cefas, 2008	Sellafield reprocessing plant (1952-present)	1720				
Shi <i>et al.,</i> 2012a	La Hague reprocessing plant (1966-present)	154				
Aarkrog <i>et al</i> ., 1986	Atmospheric weapons testing (1940s-70s)*	140				
Uchida <i>et al</i> ., 1999	Chernobyl nuclear accident	0.97				
Bailly du Bois <i>et al</i> ., 2012	Fukushima-Daiichi nuclear accident*	220				
* Calculated from Cs-137 fallout and fission vield of ⁹⁹ Tc						

* Calculated from seawater Tc/Cs ratio of 0.01, with 22PBq estimated Cs release

ICP-MS measurement of ⁹⁹Tc

- Increasingly applied to ⁹⁹Tc measurement
- Measurement requires removal of interferences by offline separation

ICP-MS/MS measurement of ⁹⁹Tc

- Improved interference removal
- Oxygen the most promising cell gas (⁹⁹Tc¹⁶O₂)
- LOD 0.5 pg g⁻¹ (0.3 mBq g⁻¹)
- Radiochemical support still required

			Target CPS	Target 10 ppb Ru	1 ppm Mo
Mode	Q1	Q2	per Bq g ⁻¹	signal	signal
			Tc	(CPS)	(CPS)
SQ	-	99	450,000	393,000	199.3
MS/MS	99	99	245,000	200,000	95.3
He SQ	-	99	79,000	170,000	4
He MS/MS	99	99	50,000	100,000	4
O ₂ standard tune	99	99	126,500*	111,000	196
O ₂ (single oxide) standard	99	115	24,500*	15000	36
O ₂ (double O) standard	99	131	25,000*	160	4
O ₂ custom tune	99	99	223,000	232,000	0
O_2 (single oxide)	99	115	29,000	25,000	4
O ₂ (double oxide)	99	131	38,000	500	2
$\mathrm{NH}_{\scriptscriptstyle 3}$ standard tune	99	185	900	500	24
$\rm NH_{_3}$ custom tune	99	185	3,000	40	116

TK201 for environmental samples

- Load and wash sample in dilute (0.01M) HNO₃
 - ⁹⁹Tc retained, Mo and Ru eluted
- Elution of 99Tc in dilute (0.1-0.2M) NH₄OH
- Can be directly loaded to ICP-MS
- Tested on water and aqueous waste samples
- How is the chemical yield assessed?

88 日間

The need for a mass spectrometry ⁹⁹Tc tracer

- Requirements of a tracer:
- Chemically identical (same element)
- Distinct characteristics (not adjacent mass numbers)
- Long half-life, low specific activity
- ⁹⁷Tc a promising candidate
- T_{1/2} = 4.21 x 10⁶(16) a

Reference	Sample Matrix	Tc Tracer	Measurement	Recovery (%)
McCartney et al., 1999	Sediment	95m	ICP-MS	50 - 70
Tagami and Uchida., 2005	Plants	95m	ICP-MS	48 - 92
Kaye et al., 1982	Vegetation	97m	β-counting	37 - 96
Beals et al., 1997	Water	97	ICP-MS	90
Wigley et al., 1999	Biota/Sediment	99m	LSC	70 - 95
Chen et al., 1990	Seawater	99m	β-counting	70
Butterworth et al., 1995	Sediment	Re	LSC	98 - 107

Production of ⁹⁷**Tc**

Calculations run using program developed during project

UoB-TIP (University of Birmingham - Tool for Isotope Production): Python based tool for the automation of nuclear reaction modelling and calculation of isotope production yields

R. AM. Allen,¹ Tz. Kokalova Wheldon,¹ C. Wheldon,¹ D. Hampel,¹ and A. Hollands¹ 1) School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, United Kindgom, B15 2TT

- Cyclotron production
- Stable Mo target
- ⁹⁷Ru (T_{1/2} 2.83 (23) d) → ⁹⁷Tc
- Predominant reactions:
- 9.15% ⁹⁴Mo(α, n)⁹⁷Ru
 10-20MeV
- 15.84% ⁹⁵Mo(α, 2n)⁹⁷Ru 20-30MeV
- 16.67% ⁹⁶Mo(α, 3n)⁹⁷Ru 30-40MeV

卷 唱

Production of ⁹⁷Tc

 Stack of 6 x 1µm Mo foils, irradiated at a range of energies

- 10µm Mo foil irradiated at 35MeV
- 97Ru produced
- ⁹⁷Ru E(γ) = 215 keV
- Separation of target material required...

https://www.birmingham.ac.uk/research/activity/ nuclear/about-us/facilities/mc40-cyclotronfacility.aspx

🚳 😂 🚯 🍈 🕲 🛞 🕲

Target separation using TK202

- Inspiration from last years Triskem UGM
- TK202 based on Polyethyleneglycol (PEG)
 - Aqueous biphasic (ABS) system
 - In presence of aqueous solutions with high ionic strength and high content of waterstructuring (kosmotropic) anions e.g. MoO₄²⁻ extracts chaotropic ions e.g. TcO₄⁻
 - Increasing Mo concentration improves Tc retention
- Optimal Tc retention in 5-7M NaOH
- Elution in water
- Ru behaviour must be determined

Experimental work

Tested at 5M, 6M and 7M NaOH

- TK202 resin soaked in 0.5M NaOH overnight
- 2 mL cartridge conditioned with 10 mL NaOH
- Mo, Ru, Re loaded in 5 mL
- Wash with 2×10 mL NaOH
- Wash with 3×5 mL DI water
- Vacuum pump run at approximately 0.5 mL/min
- Each fraction measured by ICP-MS

Preliminary results

- Eluted in 5-7M NaOH
- In agreement with previous studies

- Eluted in 5-7M NaOH
- Performance in water unknown; not an issue for proposed separation

- Eluted in water
- Potentially more strongly retained in 5M NaOH

Conclusions and next steps

- New resins offer benefits for ⁹⁹Tc separation
- Particular focus on Mo and Ru separation for ICP-MS measurement
- TK201 well suited to environmental samples
 - Load in dilute HNO₃
 - Elute in dilute NH₄OH for direct ICP-MS measurement
- Long-lived ⁹⁷Tc tracer a promising option for assessing yield
 - TK202 offers promising separation from Mo targets
 - Test and real Mo target measurements planned

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

