

Complex sample preparation using the tritium column

Ms. Megan Cook, Ms Oxana Blinova, Ms Isabelle Levy, Mr Niall Murphy Research scientist & quality manager Radiometrics Laboratory, IAEA Monaco

The analysis of aqueous samples containing high tritium content whilst enabling subsequent analysis of a range of alpha, beta and gamma fission/activation products.

Cs-137 Cs-134 Co-60 Sb-125 Ru-106 Sr90 I-129 Tc-99 Ni-63 Am-241 Pu isotopes Np-237 U isotopes Th isotopes gross alpha beta

Objectives

- Avoid tritium contamination during radiochemical analysis
- Achieve detection limits across 6 orders of magnitude for more than 7 radioanalytical techniques
- Simplified chemistry to avoid incompatibilities

Sample chemistry

Process water sample

- Resulting from chemical treatment
- High cation/anion content
- pH 7-8

Sample radionuclide content

Measurement Quality Objectives

Radioisotope	MDL Bq/L	Uncertainty %
Tritium H-3	100	<20
Gamma emitters (Cs-137, Cs-134, Co-60, Sb-125, Ru-106)	0.0005	<5
Sr-90	0.02	<5
I-129	0.03	<5
C-14	0.05	<5
Ni-63	0.05	<5
Tc-99	0.02	<5
Gross β	0.1	<25
Gross α	0.06	<25

Analysis procedures

- Liquid scintillation counting
- Gas-flow proportional counter
- Gamma spectrometry
- Alpha spectrometry

Different source preparations Different interferences

Fit-for-purpose procedure with simple chemistry

Tritium analysis

Proficiency Test sample – Eichrom method

Reported Activity Concentrations

Tritium 29.8 ± 3.5 Bq/L

Sr-90 12.3 ± 2.1 Bq/L

Cs-137 32.6 ± 4.1 Bq/L

Am-241 8.3 ± 1.4 Bq/L

Tritium analysis

Proficiency test sample – H-3 results

Sample ID	Bq/L	Uncert. k=2	% uncert.	Recovery %
S1	26.0	5.3	20.4	87.3
S2	25.5	5.2	20.6	85.4
S3	32.7	6.2	18.8	110.0
S4	29.3	5.6	19.2	98.3
S5	31.5	5.9	18.6	105.7
AVERAGE	29.0	5.6	19.5	97.3
Std Dev	3.2			10.8
Std Dev %	11.1			11.1

Mixed Gamma Experiments

Gamma screening is quick and easy!

Not susceptible to chemical changes like LSC or GFPC!

Mixed gamma sample

Nuclide	Bq/g	Bq/test (25 ml)				
Am-241	0.40	10.08				
Cd-109	0.22	5.50				
Cs-137	0.19	4.68				
Co-60	0.15	3.69				

Mixed Gamma Experiments

H ydrogen																	² He Helium
Li	Beryllium											Boron	6 Carbon	7 N Nitrogen	8 Oxygen	9 Fluorine	Neon
Na	Magnesi											Aluminium	Silicon	Phosph	Sulfur	Chlorine	Argon
K	Calcium	Scandium	22 Ti Titanium	23 V Vanadium	Chromium	Mn Mangan	Fe	Cobalt	28 Ni Nickel	Copper	Zn	Gallium	Germani	As Arsenic	Selenium	Bromine	Krypton
Rb ubidium	38 Strontium	39 Y Yttrium	Zirconium	⁴¹ Nb Niobium	42 Mo Molybde	TC Techneti	Ruthenium	Rhodium	Palladium	Ag Silver	48 Cd Cadmium	19 In Indium	Sn Tin	Sb Antimony	Te Tellurium	53	Xe Xenon
Cs aesium	Barium	Lanthan	⁷² Hf Hafnium	Ta Tantalum	74 W Tungsten	Rhenium	Osmium	77 Ir Iridium	78 Platinum	AU Gold	Hg	81 TI Thallium	Pb Lead	83 Bi Bismuth	Polonium	Astatine	Radon
Fr	Radium	Actinium	104 Rf Rutherfo	Dubnium	106 Sg Seaborg	Bh Bohrium	108 HS Hassium	109 Mt Meitneri	Darmsta	Roentge	Coperni	¹¹³ Nh Nihonium	114 Fl Flerovium	Moscovi	Livermor	TS Tenness	Oganes

58 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Prometh. .. Samarium Europium Gadolini... Terbium Dysprosi Cerium Praseod.. . Neodym... 94 93 92 Pa Np Pu Am Cm Bk U Th Fs Thorium

Removal of 'interferences'

Tritium column resins

- Diphonix® (Monophos) targeting cations
- AG 1x8, CI⁻ form targeting anions
- Polymethacrylate resin targeting organic molecules

Radioisotope cations adsorbed to Diphonix (Monophos)

Elution from chelating ion exchange resin requires redox reaction or excess reactive reagent.

Potential elutions

Diphonix resin Kd

- Nitric acid
- Phosphoric acid
- Chelating ligand?

HNO₃ elution

- 1. 25 mL load solution
- 2. 15 mL 9M HNO₃

Radioisotope	Column Load CPS	1st elution CPS	Recovery
Cs-137	0.000	0.1678	97%
Am-241	0.000	0.2250	41%
Co-60	0.000	0.0880	97%
Cd-109	0.000	0.0828	104%

2nd HNO₃ elution

1. 25 mL load solution

2. 15 mL 9M
3. 15 mL 9M

More HNO₃ elutions?

Could it be this simple?

Preliminary conclusions

Main points:

- Cs-137 recovery was acceptable at 97%
- Co-60 recovery was acceptable at 97%
- Cd-109 recovery was acceptable at 104%
- Am-241 was 41-54% with an initial elution of 15ml 9M HNO₃
- An additional 15ml of 9M HNO₃ resulted in an overall recovery of 56-64%

The combination of Diphonix/Monophos and AG 1x8 resins is an effective sample pretreatment for the separation of tritium from remaining fission/activation products.

Further work is required to determine the acceptable and repeatable recovery for actinides (Am-241).

Further work

- Testing with actinides of more complicated chemistry
- Investigation of oxidizing acids e.g. H₃PO₄
- Investigation of 'light' complexing agents e.g. oxalic acid

Further work

- Development of a QC sample for monitoring the efficiency of elutions
- Testing compatibility with subsequent radiochemical analyses e.g. Sr-90, Ni-63, I-129, Tc-99
- Repeatability and robustness testing for complete validation

Thank you!