

# Optimization of Radioanalytical Methods for the Determination of Radium in Process Water Samples from the Oil & Gas Industry

#### Maelle Coupannec<sup>1</sup>, Steffen Happel<sup>2</sup>, Ralf Sudowe<sup>1</sup>

<sup>1</sup>Department of Environmental & Radiological Health Sciences, Colorado State University <sup>2</sup>Triskem International



Triskem Workshop 65<sup>th</sup> Radiobioassay & Radiochemical Measurements Conference November 3, 2022

# Hydraulic Fracturing



# Hydraulic Fracturing

- More than 18 billion barrels of fracking wastewater containing NORM are generated annually.
- The radium concentration in these process fluids must be analyzed to provide appropriate wastewater management plans, complying with the state's laws.
- The radioactivity of the waste in enclosed systems is expected to increase in 100 years by a factor >8.





Source: EPA, <u>https://www.epa.gov/uic/class-ii-oil-and-gas-related-injection-wells</u>, Accessed May 5, 2022

## What is the Issue with Radium?

- Selectively extracted into the brine during the extraction.
- Under geologic conditions, the insoluble alpha-emitting daughters are not preferentially extracted.
- Radium in the body follows a similar accumulation pathway as Ca<sup>2+</sup> and is a primary concern due to its radiotoxicity.



# **Environmental Stakes**

- Inappropriate management of flowback and produced fluids before release can lead to Ra contamination.
- Continuous discharge of pre-treated water with a low radium concentration (0.2-1 Bq/L) lead to contamination of a stream in Pennsylvania.



The accumulation of radium in the sediments lead to elevated <sup>226</sup>Ra and <sup>228</sup>Ra activities as high as 25,000 Bq/kg.

# Radium

.

|                              | Ra-226                              | Ra-228 |
|------------------------------|-------------------------------------|--------|
| Decay series                 | U-238                               | Th-232 |
| Half-life (y)                | 1600                                | 5.75   |
| Alpha (MeV)                  | 4.78<br>(93.84%)<br>4.60<br>(6.16%) | -      |
| Beta (keV)<br>mean<br>energy | -                                   | 29.93  |
| Gamma<br>emitter             | Yes (186.2)                         | No     |



Source: Andrew W. et al. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: An analysis of produced fluids from the Marcellus Shale, Environmental Health Perspectives, 2015, Vol. 123.

## **Alkaline Earth Metals**

- > Belong to the second group of the periodic table and have 2s orbital electrons in their outer shell.
- $\succ$  Occur as M<sup>2+</sup> ions in aqueous solutions.
- No vacancy occurs in their outer shell, so they rarely form covalent bonds with organic compounds.
- > Soluble in neutral and alkaline environments.
- Readily precipitate as chromate, carbonate, phosphate, or sulfate salts.





# **Exploring Alternate Resins for Ra Analysis**

> Challenge:

Separating Ra from chemical homologs Sr and Ba.

➤ Goal:

Study uptake of all three elements on different extraction chromatographic resins at various nitric acid concentrations.



#### Why Crown Ethers Extractants?



Source: Saprizal, H. Extraction of strontium (II) by crownether: Insights from density functional calculations, 2012, Indo. J. Chem., 12 (3), 207 – 216

 $M^{2+}_{(aq)} + Crown_{org} + 2NO_3^- \leftrightarrow M(Crown)(NO_3)_{2(org)}$ 

- Crown ethers readily complex with alkaline earth metals.
- Successful separation shown in solvent extraction and extraction chromatography.
- Current separation factor for extraction chromatography is ~2
- Selectivity based primarily on the ionic radius-cavity size.

### **Crown Ether Based Extractants**

- Five crown ether-based resins were studied.
- The effects of diluents and synergistic extractant systems were explored.



| RESIN | EXTRACTANT         | DILLUENT   |
|-------|--------------------|------------|
| Pb    | Crown ether        | Isodecanol |
| Sr    | Crown ether        | n-octanol  |
| ТК100 | Crown ether/ HDEHP | -          |
| ТК101 | Crown ether/ IL    | -          |
| тк    |                    | _          |

### **Batch Contact Technique**



Weight distribution ratio for each sample was calculated with the following equation:

$$D_w = \frac{A_0 - A_s}{A_s} \cdot \frac{V_s}{M_r}$$

 $A_0$  = Activity of the initial solution  $A_s$  = Activity of the aqueous solution  $A_0$ - $A_s$  = Activity adsorbed onto the resin  $M_r$  = Weight of the resin (g)  $V_s$  = Volume of aqueous solution (mL)

#### **Results: SR Resin**





- Nearly identical Ra and Ba behavior
- Sr less retained at lower acid concentrations
- > Sr is easily separated from Ra and Ba (SF > 19 at 0.02M HNO<sub>3</sub>).

13

#### **Results: PB Resin**





- > Nearly identical Ra and Ba behavior
- Sr less retained at lower acid concentrations
- > Sr is easily separated from Ra and Ba (SF > 24 at 0.02M HNO<sub>3</sub>).

14

#### Results: TK100 Resin





Similar retention trend Ba>Ra>Sr at most acid concentrations

15

 $\blacktriangleright$  Promising Ra/Ba separation potential (SF=4.3 at 8M HNO<sub>3</sub>)

#### Results: TK101 Resin





Similar retention trend Ba>Ra>Sr at most acid concentrations

10.0

16

1.0

- $\blacktriangleright$  Promising Ra/Ba separation potential (SF=4.3 at 0.04 M HNO<sub>3</sub>)
- Twice the SF for Ra/Ba compared to SR resin

[HNO<sub>3</sub>]M

0.1

#### **Results: TKI Resin**





- No Sr retention until 5M HNO<sub>3</sub>
- $\blacktriangleright$  Best Ra/Sr separation (SF=73.4 at 3 M HNO<sub>3</sub>)
- Further studies with Ba will indicate if the resin provides a better Ra/Ba separation.

17

# Future Work

- Study preconditioning time, contact time, and temperature dependency.
- Perform dynamic column studies with simulated processed waters.

Batch contact studies with additional resins developed by TrisKem International, LLC.

# EPA Method 900

- Evaporation of the fluid followed by gas proportional counting.
- High dissolved solid content in flowback fluid interferes with the preparation of an ideal counting source.



Self-absorption within the sample decreased the counting efficiency to less than 10% when 100 mg of solid remains on the planchet.

#### **EPA Method for Flowback Water**

.



Source: EPA, Development of rapid radiochemical method for gross alpha and gross beta activity in flowback and produced water from hydraulic fracturing operations, July 2014, EPA/600/R-14/107 20

#### Just an Idea...

- 1. Preconcentrate Th and U onto Actinide<sup>®</sup> resin.
  - Collect actinides on resin and count via LSC.
- 2. Measure the eluted Ra using HPGe.
  - Ra only weakly retained on Actinide<sup>®</sup> resin
- Provides route for complete Ra, Th, and U screening.



# Results: Gross Alpha Activity

- Activity ranged from 1.6 to 2.3 Bq/L.
- The lower limit of detection achieved after 1 hour of counting.
- Liquid scintillation counting is an adequate means of detection for alpha screening in processed water.

#### Gross Alpha Measurement in Processed fluid Using Extraction Chromatography



## Results: Gross Alpha/Ra Comparison

- Samples analyzed via HPGe and gross alpha methods were compared.
- Significantly less activity was measured in the gross alpha method.
  - Gross alpha/Total Ra: 8.7-16.7%
- Low selectivity of resin for Ra evident.



# Future Work

- > Determine retention of Ra, Th, U, and Po on Actinide resin
  - Prepare simulated flowback water with known composition and activities of radionuclides.
  - Conduct batch contact studies with varying acid concentration.
- Investigation possible Ca and Fe interference that may decrease actinide retention on the resin.
  - Perform batch contact studies with varying concentrations of Ca and Fe.

# Funding

#### **U.S. Food & Drug Administration**

Laboratory Flexible Funding Model Cooperative Agreement Program



## Acknowledgements



