

³⁶Cl determination in graphite samples

using plastic scintillator materials

sck cen

Exploring a better tomorrow

Inés Llopart Babot PhD student

sck cen

Introduction

Decommissioning of nuclear facilities

ONDRAF/NIRAS

2018 SE Ignalina Nuclear Power Plant

Hou, X. 2013. Determination of pure beta emitters using LSC for characterization of waste from nuclear decommissioning. LSC 2013

³⁶Cl in decommissioning samples

CRITICAL RADIONUCLIDES

- Activation product
- Long-lived radionuclide (T_{1/2} = 3.01 E+05 years)
- Beta-particle emitter (E_{max}=709.6 keV)
- High mobility in the environment
- Present in graphite samples (4 44 Bq g⁻¹)

Based on Von Lensa W, Vulpius D, Steinmetz HJ et al (2013) Treatment and disposal of irradiated graphite and other carbonaceous waste. Mol 6:66

How ³⁶Cl is currently determined?

Sample decomposition

- Acid digestion
- Alkali fusion
- Pyrolysis

Radiochemical separation

- Silver chloride precipitation
- Cation exchange resins
- Solid phase extraction using Cl resin

Measurement technique

- Liquid scintillation counting
- ICP-MS/MS
- AMS (lesser extend)

Plastic scintillator materials (PS)

Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572

Plastic scintillator materials (PS)

sck cen

Methods

Sample combustion: Pyrolysis

Pyrolyser-Trio[™] (Raddec International Ltd.)

Based on Llopart Babot, I. et al. **2022a**. On the determination of 36 Cl and 129 I in solid materials from nuclear decommissioning activities. J. Radioanal. Nucl. Chem.

Sample combustion: Pyrolysis

Based on Llopart Babot et al. **2023**. Investigation of a new approach for ³⁶Cl determination in solid samples using plastic scintillators. Appl. Radiat. Isot. 193

Sample combustion: Pyrolysis

2nd set-up

Trapping solution HC

sck cen |

Based on Llopart Babot et al. **2023**. Investigation of a new approach for ³⁶Cl determination in solid samples using plastic scintillators. Appl. Radiat. Isot. 193

Sample measurement

Vials containing

Liquid scintillation counting (LSC)

sck cen |

1st set-up: pyrolyser connected to an LS vial containing PS

1st set-up: pyrolyser connected to an LS vial containing PS

Different trapping media

PSm 6.0 ± 0.5 %

CPSm 10.8 ± 0.5 %

30 mL 6 Mm Na₂CO₃ 80.3 ± 2.7 %

1st set-up: pyrolyser connected to an LS vial containing PS

Different trapping media

Based on Mitev. K 2016. Measurement of 222Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination. Appl. Radiat. Isot. 110, 236–243.

Low η when using PSm/CPSm as trapping medium

About 50-70 % ³⁶Cl measured in the second bubbler

³⁶Cl memory effect during pyrolysis

Llopart Babot, I. et al. **2022b**. Investigating the ³⁶Cl memory effect in pyrolysis of solid samples from nuclear decommissioning activities. J. Radioanal. Nucl. Chem.

Only a small amount of Cl is released as Cl₂

Gas adsorption in PS materials

23 ISC: Restricted

sck cen

Different loading media

SEM images to confirm loading solution effects

Blank

6 mM Na₂CO₃

4 mM NaHCO₃

sck cen

Cleaning of TK-TcScint resin

27

Saturation of the resin

30 mL 4 mM NaHCO₃ loaded

Activity spiked ³⁶ Cl (Bq)	Stable chlorine added (mg)	³⁶ Cl η (%)		
4	0	98 ± 3		
4	1	98 ± 3		
12	1	100 ± 3		
η not affected by the amount of stable CI or ³⁶ Cl activity spiked				

sck cen

Interference removal

0,35 M Na₂S Iodine elution Cl-resin

14C

🗶 1 mM KI

Anionic exchange $^{129}\mathrm{I}^{\mathrm{-}}$ and $\mathrm{I}^{\mathrm{-}}$

2nd set-up: pyrolyser connected to a bubbler containing a trapping solution 2nd approach Interference removal 45 mL 4 mM

30 mL 4 mM NaHCO₃ • 4 Bq ³⁶Cl

1

2

• 4 Bq¹²⁹I

Method application

³⁶Cl spiked graphite samples

• 1 mg stable Cl

Combustion

30 mL 4 mM NaHCO₃

³⁶Cl spiked graphite samples

Activated graphite samples from BR1

³H ¹⁴C

> **36** ISC: Restricted

1500

Activated graphite	samples fro	m BR1		
0,1 g activated graphite				
		Replicate 1	Replicate 2	
	Chlorine chemical recovery (%)	74.0 ± 7.9	74.8 ± 6.8	
Which radionuclides can affect ³⁶ Cl determination?	³⁶ Cl massic activity (Bq g⁻¹)	3.8 ± 0.9	3.8 ± 0.8	
Computed values: between 4.1 and 8.3 Bq g ⁻¹				
14C Based on Von Lensa irradiated graphite	W, Vulpius D, Steinmetz HJ et al (2013) Treatment and disposal of and other carbonaceous waste. Mol 6:66			

37 ISC: Restricted

Turnaround time (TAT): 7 h

Less than one working day

Detection limit: 20 mBq g⁻¹

Lower than clearance levels

Less chemicals involved

Conclusions

Outcome and overview

Development of a method for ³⁶Cl determination using different PS materials

Application of the method for ³⁶Cl determination in actual activated graphite samples from Belgian Reactor 1

TK-TcScint most suitable PS materials

Comparable DL with the method previously reported

- 1. Mixed wastes are avoided (no LS cocktail needed)
- **2.** Fewer chemicals required
- **3.** Shorter TAT
- 4. Gamma and beta interferences not affecting ³⁶Cl quantification

Acknowledgment

Co-authors

- Mirela Vasile (SCK CEN)
- Àlex Tarancón (UB)
- Héctor Bagán (UB)
- Andrew Dobney (SCK CEN)
- Sven Boden (SCK CEN)
- Michel Bruggeman (SCK CEN)
- Martine Leermakers (VUB)
- Jixin Qiao (DTU)
- Phil Warwick (U Southampton)

sck cen

Exploring a better tomorrow

THANK YOU FOR YOUR ATTENTION!

The information presented is published in Llopart Babot et al. **2023**. Investigation of a new approach for ³⁶Cl determination in solid samples using plastic scintillators. Appl. Radiat. Isot. 193

ines.llopart@sckcen.be

Copyright © SCK CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN. If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre

Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL