TrisKem International

New Developments in TrisKem CARM 2023– Hybrid UGM 22/02/23

Aude Bombard

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

Overview

- New Resins
 - TK-TcScint CI-36 measurement (presentation by Ines Llopart)
 - TK202 (presentation by H. Mohamud)
 - TK200
 - TK221 / TK222 (main apps in NucMed presentation by S. Happel)
 - TK102
 - TK225
- Under development
 - Extractive membranes
 - « Industrial » resins
 - Cs/Rb Resins (presentation by I. Dohvyi)
- Other projects

- Plastic scintillating beads impregnated with selective extractant
- Developped by university of Barcelona
 - García, Tarancón, Bagán
- « TK-ElScint » product line
- 1st product: « TK-TcScint »
 - Quaternary ammonium + phase modifier (similar selectivity to TEVA)
 - Environment/decommissioning => Tc-99 by LSC
- Next resins in development with cooperation with the University of Barcelona: Sr-90/Pb-210, Gross-Alpha
 - Other radionulides of interest: **CI-36**, other β-emiters

TK-TcScint

- Direct mesurement of the cartrige by LSC after loading and rinsing
 - NO elution/evaporation/aliquoting => easy automatisation
- Chemical yield via Re/ICP-MS in eluates.

TK202 Resin

- Polyethylene Glycol (PEG) grafted on inert support
- Aqueous biphasic system (ABS)
- Retention of chaotropic anions e.g; TcO_4^- in the presence of Kosmotropic anions (SO₄²⁻, CO₃²⁻, OH⁻, MoO₄²⁻,...)
- For samples rich in Mo: Tc yield > 90% for 6 8g Mo per g TK202
- Results were presented earlier by Hibaaq Mohamud:
- Suited for samples that are fused
 - Load in NaOH or KOH 5-7M
 - Rinse with NaOH or KOH 5-7M
 - Elution with a small volume of water (eluate remains alkaline)
 - Load on CEX to neutralise medium and get rid of Na+ THEN
 - Load on aluminum oxide (AloxA) to get rid of Mo traces
 - Elution in 0.9% NaCl medium

-< E N

CARM 2023- TRISKEM UGM session – 22/02/23

Re/Tc separation from Mo on TK202 Resin

TK200 Resin

- Resin based on TOPO extractant
- Extracts U, Th, Pu at pH 2 => preconcentration and purification of selected actinides on same column (mainly U)

=> automized separations/ICP-MS

- U/Th separation from water samples
- Efficient U/Pu separation from soil/sediment samples (up to 2g)
- Other applications:
 - Nuclear medecine
 - Ga-68 production (in combination with ZR Resin)
 - on-going: Pt/Ir, Zn/Cu (Zn production, Zn removal), Sc production

TK200 Resin – Dw Studies

- Retention of Am < 0,1M HNO₃;
- U/Th/Pu uptake over the whole acidity range studied;
- High uptake of Bi from 0,01 2M HNO₃ => possibility to separate from Pb in case of MS measurement;
- Uptake of Sn from $0,1 10M \text{ HNO}_3$ (alternative to TBP Resin).

- •No retention of Am ;
- U/Th uptake over the whole acidity range studied;
- Pu uptake from 3-10M HCl no retention below 3M HCl;
- High uptake of Bi from 0,01 3M HCl => possibility to separate from Pb in case of MS measurement;
- High uptake of Sn over the whole acidity range studied (alternative to TBP Resin)

TK200 Resin – Elution studies for U/Th separation from acidic solutions

Load+ Rinse	5mL Load 3 м HNO3 + 5mL 3 м HNO ₃		Load+ Rinse	5mL Load 3 m HNO ₃ + 5mL 3 m HNO ₃		
Th 1	10 mL 0.1 м HCl-0.1 м oxalic acid		Th_1	10mL 0.1 m HCl-0.1 m oxalic acid		
	5 mL 0.1 м HCl-0.1 м oxalic acid		Th_2	5 mL 0.1 m HCl-0.1 m oxalic acid		
	5 mL 0.1 м HCl-0.1 м oxalic acid		Th_3	5 mL 0.1 m HCl-0.1 m oxalic acid		
U_1	10 mL 0.1 м Ammoniumoxalate pH 9		U_1	10 mL 0.1 m NaHCO ₃		
U_2	5 mL 0.1 м Ammoniumoxalate pH 9		U_2	5 mL 0.1 m NaHCO ₃		
U_3	5 mL 0.1 м Ammoniumoxalate pH 9		U_3	$5 \text{ mL } 0.1 \text{ m } \text{NaHCO}_3$		
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%	450mg TOPO U Th		100% 90% 80% 70% 60% 50% 40% 30% 20% 10%	450 mg TOPO U Th Load+ Rinse Thorium_1 Thorium_2 Thorium_3 Uranium_1 Uranium_2 Uranium_3		

Th selectively separated from U and recovered quantitatively U quantitatively recovered with 15mL of various solutions depending on needs

U/Th separation on TK200

- Load: 3M HNO₃ or \geq 1L pH2 (HNO₃)
- Very clean U/Th separation
- Alcaline oxalate instead of carbonate

TK200 Resin - U/Pu separation (Wang et al – 2019)

=> U remains fixed on resin in these conditions

TK200 Resin – Conclusions

- Preconcentration of actinides from pH1-2 solutions => medium usually used to preserve samples for storage and prior to analysis
- Th/U and U/Pu Separations are efficient
- Possibility to extract/concentrate Sn and Cd in HCl and elute in low HNO₃ concentration.
- Zr/Hf are well extracted in HCl (1-10M) and HNO₃ (whole studied range)

TK221 Resin

(Papp, I., Vajda, N. & Happel, S. An improved rapid method for the determination of actinides in water. *J Radioanal Nucl Chem* **331**, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)

Resin based on a mixture of diglycolamide and phosphine oxide + traces long chained alcohol on inert support.

- Main applications in radpharm
- Applications for the separation of actinides

TK221 Resin (Papp, I. et al. J Radioanal Nucl Chem 331, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)

- Same as TK221 Resin but based on TEHDGA
- About same properties as TK221 Resin
- More information in Steffen Happel's presentation

TK102 Resin

-Modified version of SR Resin

- Same crown-ether
- Solvent, inert support and ratios => different
- Work by Illarion Dohvyi (Poster during ERA14), Marine Bas, Soumaya Khalfallah, Nora Vajda, Steffen Happel
- -Separating Methods under development

TK102 Resin - Determination of Kd values

Fig. 1: Distribution coefficients of selected elements on TK102 Resin in HNO₃

 ▶ Sr, Ba, Pb and TI show high D_W in HNO₃

Fig. 2: Distribution coefficients of selected elements on TK102 Resin in HCl

► Pb, Tl, Sn, Sb, Ga show hight D_W in HCl

Fig. 3: Distribution coefficients of Sr on TK102 Resin in

3 M $\mbox{HNO}_{3}\mbox{ in the presence of different salts}$

 \blacktriangleright D_w Sr decreases by 30% with NaNO₃ up to 1 M,

▶ no effect of KNO_3 and $Ca(NO_3)_2$ up to 0,05 M.

TK102 Resin - Determination of capacity (column experiment)

Fig. 4. Sorption curves of Sr, Ba and Pb on TK102.

Table 1 TK102 capacities for Sr, Ba, Pb in 3 M HNO3 from results of different experiments.

		Capacity in			Langmuir	Maximum
.02	Element	column	DEC ma/a	TDEC ma/a	maximum	theoretical
102		experiment,	DEC, mg/g	TDEC, mg/g	capacity,	capacity,
102		mg/g			mg/g	mg/g
	Sr	41.6	27.2	40.9	39.7	45.5
	Ba	12.8	6.7	19.9	*	70.8
	Pb	94.1	74.3	97.2	98.0	106.9

* – cannot be determined under the conditions studied due to limitations in the solubility of $Ba(NO_3)_2$ in HNO₃.

TK102 Resin - Determination of capacity (Langmier isotherm)

Fig. 5. Sr sorption isotherms with TK102: $q_e - C$ plot (a), linearized in coordinates: $1/q_e - 1 / C$ plot (b),

$$\frac{1}{q_e} = \frac{1}{K_L \cdot q_m \cdot C_e} + \frac{1}{q_m}$$

TK102 Resin – Elution curves comparison Vs SR Resin regarding Sr

TK102 Resin vs SR resin: Sr elution study in 8M HNO₃ load medium

Resins TK102 and SR similar for the separation of elements Th/U/Pb/SR/Ca/Bi/Y/Ca and Ba

TK102 Resin – Elution curves comparison vs SR Resin regarding Pb

TK102 Resin vs SR resin: Pb elution study with 2M HCl loading medium

Resins TK102 and SR similar for the separation of elements Th/U/Pb/SR/Ca/Bi/Y/Ca and Ba

65th RRMC - Atlanta (10/31-11/04/2022) - UGM

TK102 Resin – Ba/Ra behaviour vs SR

- Ra eluted in the 6 BV @ 3M HNO₃
- Sr/Pb and Ba remained fixed on resins
- Ba on TK102 => possibility to separate Ra and Ba (conditions and tests to be continued)

- -Resin based on TO-DGA and ionic liquid
- -Selectivity similar to DGA,N Resin
- Presence of ionic liquid => increase of the selectivity towards trivalent elements (difficult to remove from the resin)

TK225 Resin (2/3)

TK225 resin shows retention for Ca

=> Methods under development for Ca specific separation

TK225 Resin (3/3)

TK225 resin shows retention for Th, Zr and Hf

TK225 resin shows retention for Sb, Sn, Zr and U

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

25

 New product line: impregnated filtering membrane (MF)

Coming products – impregnated filtering

- Fast flow rates

membranes

- Use with water samples (1 5L),
 But also
- Use as Passive Sampling (DGT)
- In development (including procedures):
 - TK100 (Sr, Pb, Zn), TK101 (Pb, Ra)
 - CL Resin (radio-iodine)
 - TK201 (Tc, Re)
 - Calixarenes (Ra, Cs)

• ...

TK201 membranes: Tc separation

fraction		1st parallel		2nd parallel		3rd parallel	
		eluted %	unc %	eluted %	unc %	eluted %	unc %
1	Ef1	LD	-	LD	-	LD	-
2	Ef2	LD	-	LD	-	LD	-
3	Ef3	LD	-	LD	-	LD	-
4	Ef4	LD	-	LD	-	LD	-
5	R1	LD	-	LD	-	LD	-
6	R2	LD	-	LD	-	LD	-
7	R3	LD	-	LD	-	LD	-
8	R4	LD	-	LD	-	LD	-
9	R5	LD	-	LD	-	LD	-
10	R6	LD	-	LD	-	LD	-
11	El1	81.5%	0.5	79.6%	0.5	83.2%	0.5
12	El2	10.1%	1	13.1%	1	11.4%	1
13	EI3	3%	2	1.9%	3	1.9%	3
14	El4	1%	5	1.0%	4	0.9%	5
15	EI5					0.4%	9
16	El6					0.1%	20

Eluent yield %	95%	96%	98%
Total yield %	95%	96%	98%

- Tc fully retained on TK201 disc from 1 L tap water acidified with HNO₃ @ pH 2 spiked with Tc,
- <u>NO</u> Tc leakage detected during loading nor rinsing steps,
- > 95% of Tc eluted/recovered with 20 mL 20% 20% 65th RRMC - Atlanta (10/3140% 04 session 0%

TK100 membranes

DGT base

Already in use for passive sampling of Sr and Pb

- Requests from hydrometallurgy area
 - Possible applications in decontamination and valorisation of effuents or decontaminent (e.g. acid)
- Different resins
- Bigger particle size support ~400 600µm
- Higher amount of resins requested
 - -Challenge: supply of extractant and inert support
 - Extractants: sufficient quality, low costs, high quantities
- Increase of production capacity for these resins

Under development - Cs/Rb Resins

- See Ilarion Dohvyi's presentation just after this one!
- For the on-going projects, see Steffen Happel's presentation at the end of this session

Thank you for your attention!

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

in

f

y

Expertise in Separation Chemistry