TrisKem International

Application of extraction chromatography in the purification and QC of radiometals for use in Nuclear Medicine and Radiopharmacy

S. Happel, M. Bas, I. Dovhyi

07/06/2023

TrisKem International

- Based in Rennes (France)
- Independent company since 02/07
 - Formerly part of Eichrom Europe
 - ISO 9001 since 2007
- Main product line: extraction chromatographic resins
- Staff : 20
- R&D, QC and TechSupport group:
 - 4 RadChem PhD, 3 Technicians
- R&D: Development of new resins, techniques and applications
- Several domains

Research interests - Radiopharmacy

- Purification of radiometals for use in diagnostics and therapy
 - Mainly: separation of radionuclides from irradiated targets
 - Diagnostics: Zr-89, Cu-64, Ga-68, Ge-68, Ti-44/5, Tc-99m, Sc-43/4...
 - Therapy: Ac-225, Pb-212, Lu-177, Tb-161, Cu-67, Sn-117m, Sc-47...
 - Also: QC, valorization/recycling and waste/effluent treatment
 - Resin characterization and method development done 'cold'
 - Cooperation with cyclotrons & reactors, universities,...
 - Choice of right resin(s):
 - Rapid separations, high purity of products
 - Radiolysis stability
 - No selectivity for target material, high selectivity for product
 - Elution under 'soft' conditions in small volume => labelling/injection
 - Facile automatization e.g. cassettes / no evaporation steps
 - Combining several resins can facilitate the separation
 - Conversion (high acid to dilute acid)
 - Removal of impurities upfront

Ga-68 separation from Zn targets

Δ

- Irradiation of Zn-68 targets in cyclotron
- Ga-68 separation on ZR Resin
 - No selectivity for Zn (target material)
 - Loading possible from:
 - dilute acid (liquid targets => typically HNO₃)
 - >6M HCl (solid targets)
 - Rinse under loading condition
 - Elution with ~1 2M HCl
 - Too acidic for injection or labelling

\Rightarrow New IAEA TechDoc:

- Ga-68 'conversion' necessary
 - Evaporation & dissolution difficult to automize
- Easier => use of another resin
- TK200 Resin (TOPO) load from 1 2M HCl
- Rinse with e.g. 1 2M HCl
- Elution in 2 3 BV water, dilute acid,...

https://www-pub.iaea.org/books/IAEABooks/13484/Gallium-68-Cyclotron-Production

Cyclotron production of Ga-68

Table 1 High level schemes of [68Ga]GaCl₃ purifications

	Scheme A*	Scheme B		
1 ZR Load	< 0.1 M HNO ₃			
2 ZR Wash	15 mL 0.1 M HNO ₃			
3 ZR Elution / Trapping on TK200	5–6 mL ~ 1.75 M HCI			
4 TK Wash	-	3.5 mL 2.0 M NaCl in 0.13 M HCl		
5 TK Elution	H ₂ O	1–2 mL H ₂ O followed by dilute HCl to formulate		
*Process as reported previously (Nair et al.	2017)			

- Solid targets:
 - J. Kumlin et al.
 - ZR, LN & TK200 for solid targets
 - High Ga-68 activities
 - ARTMS/Odense: 10 Ci production
 - One column separation possible using TK400 Resin => solid targets
 - Ga retention on TK400 from high HCl
 - No Zn retention
 - Faster flow than ZR Resin
 - W. Tieu et al. use of single TK400 cartridge for solid Zn targets
 - Svedjehed et al. use of TK400/A8/TK200 for solid Zn targets

Demystifying solid targets: Simple and rapid distribution-scale production of [⁶⁸Ga]GaCl₃ and [⁶⁸Ga]Ga-PSMA-11

Johan Svedjehed, Martin Pärnaste, Katherine Gagnon*

Cyclotrons and TRACERcenter, GEMS PET Systems AB, GE Healthcare, Uppsala, Sweden

6

TK400 Resin

- Long chained alcohol initial work by A. Knight et al.
- Retention only at high HCl concentration, elution in low HCl, water,...
- Main application: Pa separation
- Other applications:
 - Also retains Mo, Nb, Fe, Ga, Po
 - Fe separation (higher cap than TRU)
 - Ga removal from Cu-67 & Fe, Nb removal from Zr
 - Ga separation from Zn at high HCl
 - Nb separation from Zr possible (Nb-90)
 - Under further testing for At separation (elution...)
 - Bleeding => upcoming TK401 Resin

- Preferably Ga elution in 1.5 –
 2M HCl => Fe remains retained on TK400
- Ga elution onto TK200

Cu-61/4 separation on TK201

Cu-61/4 separation from solid Ni targets

- Ni targets dissolved in high HCl
 - CU Resin generally not used
- Typically separation via anion exchange
 - Elevated elution volumes
- Use of TK201 instead (sharper elution)
 - Originally for Tc separation
 - No selectivity for Ni, good Cu retention, Zn very well retained
- Load and rinse at 6M HCl
 - Ni removal and recovery/recycling
- Co elution with 4 5M HCl
- First tests: Cu elution with 0.5M HCl
 - Zn remains retained
 - Ga and Fe separation
 - ⇒ Eluate too acidic requires further treatment => requires improvement

Cu-61/4 separation on TK201

- Improvement:
 - Use of TBP (or TK400) upfront for Fe/Ga removal
 - allows for Cu elution in 0.05M
 HCl => suitable for labeling
 - Zn remains retained
 - Problem: TK201 'acid sponge' => eluate higher than 0.05M HCl
 - Gagnon et al. use of NaCl/HCl for better pH control of eluate
- TK201 also used with CU Resin (and TK400) for Cu-67 separation from Zn targets
 - Conversion from 6M HCl to 0.05M HCl and Zn removal
- Currently being tested for Co separation (2x TK201) from Ni targets and for Zn separation

Svedjehed et al. ENMMI Radiopharmacy and Chemistry (2020) 5:2 https://doi.org/10.1186/s41181-020-00108-7

EJNMMI Radiopharmacy and Chemistry

RESEARCH ARTICLE

Open Access

Automated, cassette-based isolation and formulation of high-purity [⁶¹Cu]CuCl₂ from solid Ni targets

Johan Svedjehed¹, Christopher J. Kutyreff², Jonathan W. Engle^{2,3} and Katherine Gagnon¹

Tb-161 separation

- nca Lu-177 more frequently used but strong interest in nca Tb-161
- Part of the 'Swiss knife of nuclear medicine' => Tb isotopes

Tb	Tb 149 Tb 152		152	Tb 155	Tb 161
4.2 m	4.1 h	4.2 m	17.5 h	5.32 d	6.90 d
ε β ⁺ α3.99 γ796; 165	ε α3.97 β ⁺ 1.8 γ352; 165	γ283; 160 ε; β ⁺ γ344; 411	ε β ⁺ 2.8 γ 344; 586; 271	ε γ87; 105; 180, 262	β ⁻ 0.5; 0.6 γ 26; 49; 75 e ⁻

Terbium: a new 'Swiss army knife' for nuclear medicine Source: https://cerncourier.com/a/terbium-a-new-swiss-armyknife-for-nuclear-medicine/

- Typically irradiation of several hundreds of mg (or more)
- Work on upscale on-going (incl. recycling and decontamination of effluents) => originally 0.5 - 1g targets / now: >1g for Tb-161 and >5 - 10g for Lu-177
- Separation via TK211/2/3 Resins
 - Mixture of extractants (HDEHP, HEH[EHP], Cyanex 272, Cyanex 572)
 - Inert support containing aromatic groups + higher capacity for extractant
 - Long-chained alcohol as radical scavanger
 - $30\mu m$ particles => smaller ($10 15\mu m$) possible but high pressure drop...

Tb separation from 1000 mg Gd targets

A simple and automated method for ¹⁶¹Tb

- 500 1000 mg Gd in cold work, hot 200 300 mg Gd targets
- Irradiated target typically dissolved in >3M HNO₃ => Conversion via TK221 Resin
- Sequential separation on TK212/TK211
- Final conversion to dilute HCl on TK221 + trace nitrate removal on AIX
- Mainly Tb-161, also Tb-155

Tb separation from 1000 mg Gd targets

- Initial separation on TK212 147 mL column (30cm x 2.5cm)
- Flow rate ~15 mL/min
- Gd recovery => very expensive & difficult to find
- Tb separation from Gd and Dy ideally using online detection
- Fine purification on TK211 (29 mL)

Tb separation from 1000 mg Gd on TK212 (147 mL column)

Tb purification on TK211

- Direct load of Tb fraction from TK212 onto TK211 (29 mL 30cm x 1.1cm)
- Flow rate ~15 mL/min
- Gd breakthrough during load & rinse with 0.5M HNO₃ (alternatively HCl)
- Tb elution (Dy sufficiently well removed before) preferably in >3M HNO₃
- Conversion to dilute HCl via TK221, A8 for nitrate removal
- Option: LN3 cartridge for Dy removal from Tb before use (e.g. after long shipment)

Ac-225 separation

- Ac-225 separation chemistry well established
- Currently typically DGA (mainly B) is used fore Ac/Ra separation
 - Open questions:
 - Imperfect La/Ac separation (suggested: additional separation on LN)
 - Radiolysis stability sufficient? => limited stability of DGA
- On-going tests:
 - Use of TK221 (TO-DGA / phosphine oxide) or TK222 (TEH-DGA / phosphine oxide) => TK221 shows higher La retention than DGAs
 - Focus on La/Ac separation
 - Sharp Ac elution => for TK221/2 only in dilute HCl
 - Improved radiolysis stability?
 - Resalting possible? Ac nitrate => Ac chloride
 - Ac data et al: publication under preparation

Ac-225 separation – method under optimisation

- Two TK221 cartridges for removal of impurities incl. La
- Two additional, optional Pb removal steps (TK102 and TK101)

Step 1 TK221: Target dissolved in 2 – 4M HNO_3 Ra, Ba, Pb, Sr,... removal with 4M HNO_3 Ac elution in ~12M HNO_3 (LNs retained)

Step 2 TK221:

2x diluted eluate from first TK221 Rinse with 6M HNO_3 and optional rinses with:

10M HCl => Bi removal and 0.05M HNO₃ (Fe, Po removal) Ac elution in 0.05M HCl

TK221 Resin – Ac separation – step one

Rinse 2: 5 mL 10 M HCl Rinse 3: 5 mL 0.05 M HNO3 90% Elution : 6 mL 0.05 M HCl 80% ---- Pb -Bi 70% BV 0.05 M HNO3 Elution: 6 BV 0.05 M HC BV 6 M HNO3 ---- Eu Recovery (%) 60% Rinse 2: 5 BV 10 M HCI 1 BV 6 M HNO3 - Th 50% 40% Rinse 1: 10 Rinse 3: 5 -O-Er 30% Load: -- Ce -Ba 20% -Tb 10% - Fe ------------------------------Nd 0% 18 24 Fractions

In case LN need to be removed
 Two step procedure

First Ac / LN separation

First TK221

- Load from elevated HNO₃
- Ac elution in very high HNO₃
 - LNs, U, Th retained
- Particular attention to Pb/Sr
 - Elution in 4M HNO₃
- Second TK221
 - Dilute x2 => load
 - Bi removal 10M HCl
 - Fe removal in 0.05M HNO₃
 - Ac elution in 0.05M HCl
 - Important: Lanthanides need to be removed upfront (1st TK221)
 - Additional purification on TK101 possible (Ra, Ba, Pb, Sr)

Optional: TK101 purification step

Data courtesy of B. Russel (NPL)

Optional Pb, Bi, Ra, Sr,... removal step (TK101) Pass Ac fraction (0.05M HCl) through TK101 Ac passes - Ra, Pb, Sr, Bi,... retained

Ra purification / recycling

- In case Ra needs to be purified on-column (e.g. dissolved Ra needles) => Use of TK101 for Ra retention / purification
 - Test against Chelex, CEX, TK100
- TK101 => similar to TK100 but ionic liquid replaces HDEHP
 - Both based on same crownether as SR Resin
 - TK100 developed for Sr and Pb uptake also between pH ~2 and 7 (DGT)
 ⇒ Wagner et al. TK100 discs
 - \Rightarrow Retains wide range of elements
 - Replacing HDEHP by ionic liquid (=> TK101 Resin) allows for retention of Pb,
 - Sr, Ba, Ra,... from pH \sim 2 7 without extensive extraction of other elements

TK101 - Radium

Data provided by Russel et al. (NPL)

- Ra retention from water/dilute acid up to ~0.5M HNO₃/HCl
- At higher conc. selectivity closer to SR Resin/TK102 Resin

TK101 Resin

- No / extremely low selectivity for TM, Th/U, Ac
- Very strong Pb retention => elution in high HCl or citrate

Ra separation on TK101

- Good Ra separation when loading from
 dilute HNO₃/HCl
 dilute HNO₃/HCl
- When eluting Ra in 3M $\mathrm{HNO}_3, \mathrm{Ba}, \mathrm{Pb}, \mathrm{Sr}$ remain retained
- No retention of U, Th, Pt, Ir,...
- Ra eluted in $3M HNO_3$
 - TI and Ba eluted in 8M HNO₃

Ra purification

- Work on crown-ether based resin for Ra ongoing
 - Aim: Ra retention from acidic/high NO₃⁻ matrices, high capacity
- In-between: work on TK101 and TK102...

- Ra separation from matrix (e.g. Pt/Ir) and Ba
 - Ra retention and purification at 0.05M HNO₃
 - Ra elution in 3M HNO₃
 - Pb, Sr, Ba remain retained
- Might require additional TK102 for Ba removal

CU Sheets

- Poster presented at Terachem 2022 (Svedjehed et al.)
- Other than for DGA Sheets not for radionuclidic purity
- QC of Cu radiolabeled peptides (labeled vs free Cu)
 - Shown: [⁶¹Cu]Cu-NOTA-octreotide
- Spotting/run on three different papers after labeling:
 - Whatman and iTLC without modification and
 - CU extractant impregnated iTLC paper.
- Both iTLC paper (impregnated/nonimpregnated) developed in less than 10min, Whatman took 25 – 30 min.
- CU extractant impregnated iTLC paper showed superior resolution
- Beta testing, commercialisation September 2023

 Other systems under development/testing (TK101, ZR,...)

DGA Sheets

- TO-DGA (normal DGA) and TEH-DGA (branched DGA) impregnated TLC paper
 - Developed at CVUT (Kozempel et al.)
- QC of radionuclides and generator eluents
- (p.ex. Ra-223, Ac-225/Bi-213, Pb-212, Ge-68/Ga-68 ...)
 - TLC scanner or radiometer/LSC or HPGe after cutting
- Run under acidic conditions => radionuclidic purity

A scheme of chromatographic separaton of mixture of ²²⁷Ac and his daugther's niclides. ²²⁷Th remains on start, ²²⁷Ac has the retenton factor ca 0.2, ²¹¹Pb ca 0.7 and ²²³Ra ca 0.9.

Radiochromatogram measured immediately after separaton. Low abundant radiatons of ²²⁷Ac were not detected.

Radiochromatogram measured one hour afer separaton. Decay and ingrowth of ²¹¹Pb is clearly visible.

- More types of sheets under development (selectivities, geometry, support)
 - ZR, TK201,...
 - 2D TLC for radionuclide screening ?

Research interests

- Upscale of radiolanthanide separations
- Ra Resins
- Radiometal purification
 Sb, Pd, Hg, Mn, V, In, Sc, At...
- Improvement of radiolysis stability
- Separation of DTMs
 - Calixarene-based Cs/Rb Resins
 - Mo, Nb, Se, Sb,...
- RP RN in the environment
- In-field preconcentration
 - Impregnated membranes
 - Cartridges

- Passive sampling (DGT)
 - TK100 discs for Sr, Pb, Zn
 - E.g. <u>Wagner et al.</u>: Labile Pb and Sr in soil samples via DGT
 - CL resin for iodine, CA for Ra,...
- Rapid tests
 - Range of impregnated PSm resins
 Uni Barcelona
 - Impregnated membranes
 - Range of 'Test sticks'NPL, JCU
- Other 'geometries' &
 - 'Non-resin' separation materials
- Microfluidics

Thank you for your attention!

in

f

Y