A simple and straightforward technique for analyzing radionuclides in seawater

18 Apr, 2024

Hyuncheol Kim (hckim3@kaeri.re.kr), Gahyun Kim (ghkim97@kaeri.re.kr)

Technological innovation

⁹⁰Sr ¹³⁷Cs

~ 1 mBq/kg in seawater

Materials and Apparatus

AMP-PAN (or KNiFC-PAN)

DGA resin

2 mL column

SALT-100 (WITHTECH Ltd. ; South Korea)

Eight peristaltic pump Flow rate: 10 – 100 mL min⁻¹ Applicable with 2 mL/ 5 mL column https://www.withtech.co.kr/en/busi/new_busiList_5.php

Hidex Q-ARE

Automated Radionuclide Extraction System

The most advanced automated radionuclide extraction chromatography system dedicated to radionuclide separation from environmental, food and decommissioning samples.

Quick and easy-to-use unattended radionuclide extraction

User friendly, intuitive and hassle free.

https://www.hidex.com/

Q uick A utomated

R adionuclide E xtraction

4

⁹⁰Sr in seawater

This method focused on separation of ⁹⁰Sr from seawater sample.

This method focused on separation of ⁹⁰Y from seawater sample, which is equilibrium with ⁹⁰Sr

Fig. 2. Schematic chart of the analytical procedure for the determination of ⁹⁰Sr concentration in seawater.

⁹⁰Sr in seawater; references

Automated extraction chromatographic radionuclide separation system for analysis of ⁹⁰Sr in seawater

Hyuncheol Kim^{a,*}, Yoo Gyum Kang^{a,b}, Yong-Jin Lee^{a,b}, Sang-Do Choi^a, Jong-Myoung Lim^a, Jin-Hong Lee^b

^a Nuclear Emergency and Environmental Protection Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
^b Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea

A	R	Т	I	С	L	E	I	N	F	0

Automated separation system

Environmental monitoring

Emergency preparedness

Keywords:

90Sr

Seawate

ABSTRACT

After the Fukushima Dai-ichi nuclear power plant disaster, the demand for a rapid method for the detection of environmental radioactivity increased drastically. Since the development of extraction chromatography using resins, analytical methods have advanced significantly in terms of simplicity and required labor. Herein, a homemade automated separation system that is applicable radio-extraction chromatographic separation techniques is reported. A simple, rapid, and high-throughput method was developed using this home-made automated separation system to analyze radiostrontium in seawater in emergency and routine situations. For emergency situations, radiostrontium in seawater is pre-concentrated on a cation exchange resin and consecutively purified using the Sr-resin. Fifty minutes are required for the purification of ⁹⁰Sr in four samples (100 ml). The minimum detectable activity (MDA) for 90Sr is 0.2 Bq kg⁻¹ at 100 min counting, with a recovery of 70% and counting efficiency of 95% in the scintillation mode. For routine monitoring, 90Y that is in equilibrium with 90Sr is first separated from the sample matrix using DGA. Treatment of 30 L of each seawater sample requires \sim 2 h. The MDA for this method is 0.3 mBq kg⁻¹ at 400 min counting with a recovery of 70% and counting efficiency of 67% in the Cerenkov mode. By employing the developed method, the measured 90Sr in seawater collected from the coastal area of Korea is 0.92 \pm 0.18 mBq kg⁻¹, which is comparable to that reported previously. The measurements were obtained using a liquid scintillation counter, and the entire separation process was performed by employing the home-made separation system.

> Seawater sample: 10 ~ 30 L Flow rate: 50 mL/min

Fig. 4. Breakthrough of Y in different matrices of the sample.

⁹⁰Sr in seawater; references

Marine Pollution Bulletin 193 (2023) 115258 MARINE POLLUTION BULLETIN Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul

Strontium-90 levels in seawater southeast of Jeju Island during 2021-2023

Gahyun Kim^{a,b}, Sang-Do Choi^a, Jong-Myoung Lim^a, Hyuncheol Kim^{a,b,*}

^a Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, 111 Daedeokdae-ro 989 beongil, Yuseong-gu, Daejeon 34057, Republic of Korea ^b Nuclear Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

ARTICLEINFO	A B S T R A C T
Keywords: Strontium-90 ⁹⁰ Sr analysis method Seawater Fukushima accident impact Marine radioactivity	This study introduces an efficient method for determining 90 Sr activity levels in seawater, reducing the processing time to <3 h for 50 L of seawater. The key feature of the proposed method is the chemical separation of 60 Sr when it is in equilibrium with 90 Sr, which is achieved by utilizing custom-made sample-loading equipment and an automated radionuclide separation instrument. As a result, the procedure consistently yields a recovery rate > 90 % for 90 Sr. Investigations of 90 Sr levels were conducted in the ocean southeast of Jeju Island from November 2021 to January 2023. Owing to the regional ocean circulation, this region was among the first within the Korean Peninsula to experience the impact of the Fukushima-accident-derived radionuclides. Throughout the investigation period, the observed 90 Sr vacivity concentration ranged from 0.57 to 1.0 Bq m ⁻³ . No distinct temporal variation of 90 Sr was observed in the selected area during the investigation.

1. Introduction

Strontium-90 (half-life: 28.91 y) and 137Cs (half-life: 30.08 y) have been recognized as two of the most hazardous artificial radionuclides owing to their high radiotoxicity and long half-lives (IAEA, 2023). As ⁹⁰Sr exhibits a chemical behavior similar to that of calcium and emits high-energy β particles along with its daughter ⁹⁰Y, it is accumulated in mammalian bones, causing bone cancer and leukemia (Vajda and Kim,

been used as an oceanic water mass tracer (Hirose and Povinec, 2020). As 90Sr and 137Cs are soluble in seawater and have similar half-lives, they have specific global fallout ratios (~0.63) (UNSCEAR, 2000). The Fukushima accident presented different oceanic inputs of 90Sr compared to ¹³⁷Cs, thus causing deviations from the global fallout ratio between ⁹⁰Sr and ¹³⁷Cs (Povinec et al., 2013). For instance, seawater samples collected from the vicinity of the Fukushima Daiichi Nuclear Power Plant (FDNPP) in September 2013 yielded a 90 Sr/137 Cs activity ratio of

> Seawater sample: 50 - 100 L Flow rate: 80 mL/min

Pretreated seawater

WW

2~(4)

(5)

Custom-made sample loading equipment

Sample in

Check for updates

Campaign for ⁹⁰Sr in the ocean (2021-2023)

Marine Pollution Bulletin 193 (2023) 115258							
ELSEVIER	Contents lists availa Marine Pollu journal homepage: www.ela		ARABINE POLLUTION BULLETIN HENDERSTRIKE				
Strontium-90 levels in seawater southeast of Jeju Island during 2021–2023							
Carly un Killi -, [*] Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, 111 Daedeokdae-ro 989 beongil, Yuseong gu, Daejeon 34057, Republic of Korea							
ARTICLE INFO ABSTRACT							
Keywords: Strontium-90 [®] Sr analysis method Seawater Feakater Marine radioactivity	This study introduces an efficient method for determining ⁹⁰ Sr activity levels in seawater, reducing the processing time to <3 h for 50 L of seawater. The key feature of the proposed method is the chemical separation of ⁹⁰ Y when it is in equilibrium with ⁹⁰ Sr, which is achieved by utilizing custom-made sample-loading equipment and an automated radionuclide separation instrument. As a result, the procedure consistently yields a recovery rate > 90 % for ⁹⁰ Y. Investigations of ⁹⁰ Sr levels were conducted in the ocean southeast of Jeju Island from November 2021 to January 2023. Owing to the regional ocean circulation, this region was among the first within the Korean Peninsula to experience the impact of the Fukushima-accident-derived radionuclides. Throughout the investigation period, the observed ⁹⁰ Sr activity concentration ranged from 0.57 to 1.0 Bq m ⁻³ . No distinct temporal variation of ⁹⁰ Sr was observed in the selected area during the investigation.						
 Introduction Strontium-90 (half-life: 28.91 y) and been recognized as two of the most ha owing to their high radiotoxicity and la ⁹⁰Sr exhibits a chemical behavior simili high-energy β particles along with its da mamalian bones, causing bone cancer 2010). Strontium-90 has been release several sources, including atmospheric (conducted at a global scale) and from n PBa) and nuclear accidents (0.1–2 PB). 	ardous artificial radionuclides ang half-lives (IAEA, 2023). As to to hat of calcium and emits ughter ⁹⁰ Y, it is accumulated in and leukemia (Vajda and Kim, d into the environment from nuclear bomb tests (380 PBq) uclear reprocessing facilities (7	been used as an oceanic water mass tracer (Hirose an As ⁹⁰ Sr and ¹³⁷ Cs are soluble in seawater and have they have specific global fallout ratios (-0.63) (UNS Fukushima accident presented different oceanic input to ¹³⁷ Cs, thus causing deviations from the global fall ⁹⁰ Sr and ¹³⁷ Cs (Povince et al., 2013). For instance, collected from the vicinity of the Fukushima Datic Plant (FDNPP) in September 2013 yielded a ⁹⁰ Sr. ¹³⁷ Cs 2.28, which is lower than the global ratio (-0.63) 2016). The comparison of ⁹⁰ Sr and ¹³⁷ Cs activity therefore aid in the estimation of the long-term impace disaster on the marine environment (Hinose and Pow	similar half-lives, CEAR, 2000). The s of ⁹⁰ Sr compared out ratio between seawater samples hi Nuclear Power Cs activity ratio of (Castrillejo et al., in seawater can t of the Fukushima				

(IAEA, 2005; Povinec et al., 2012). In 2010, the total ocean inventory of

⁹⁰Sr was reported to be 105 PBq, half of which exists in the Pacific Ocean

(Povinec et al., 2012). The riverine input of ⁹⁰Sr is reported as an influential source of the marginal seas because of the high mobility of

⁹⁰Sr, attributed to its high solubility in water in the terrestrial environ-

ment (Povinec et al., 2003; Zhang et al., 2021). Given these factors, understanding the sources, inventory, and fate of artificial radionuclides

Strontium-90, a highly soluble radionuclide with a long half-life,

behaves conservatively in seawater and is transported via physical

processes, such as advection, diffusion, and mixing. Therefore, 90Sr has

in marine environments is crucial.

disaster on the marine environment (Hirose and Povinee, 2019). However, data regarding ⁹⁰Sr activity in the ocean are limited owing to the intricate, time-intensive, and laborious methods required for the determination of ⁹⁰Sr, in contrast to that of ¹³⁷Cs. As ⁹⁰Sr plays a significant role in tracing complex ocean circulation and understanding the behavior of the Fukushima-accident-derived radionuclides (Hirose and Povinec, 2019), an analytically friendly method for ⁹⁰Sr determination provides a better understanding of the marine environment.

During an investigation of the potential impact of the Fukushima accident, ¹³⁴Cs was observed in the South China Sea and the East China Sea from 2013 to 2014 (Wang et al., 2022). Despite its short half-life of 2.06 y (which makes it difficult to detect after 10 y). ¹³⁴Cs serves as a

Elapsed time for analyzing the 60 kg of seawater?

4 hr excepting the measurement time

¹³⁷Cs in seawater

(From Sanghan Lee)

Ref. Korea Institute of Nuclear Safety(KINS)

¹³⁷Cs in seawater

- 𝞯 It is labor−intensive work.
- ✓ Elapsed time for analyze: 3−4 days (excepted measurement time)

- ✓ User friendly and table-top equipment (size: 0.4 m x 0.3 m x 0.6 m)
- Elapsed time for analyze: within 1 day (excepted measurement time)

¹³⁷Cs in seawater: references

J Radioanal Nucl Chem (2013) 296:369–374 DOI 10.1007/s10967-012-2014-5

J Radioanal Nucl Chem (2013) 296:841-846 DOI 10.1007/s10967-012-2007-4

Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry

S. M. Pike · K. O. Buesseler · C. F. Breier · H. Dulaiova · K. Stastna · F. Sebesta

Received: 13 July 2012/Published online: 8 August 2012 © Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The March 2011 earthquake off the Japanese coast and subsequent tsunami that devastated the Fukushima Dai-Ichi nuclear power plant resulted in the largest accidental release of cesium 137 and 134 to the oceans. Seawater samples were collected in June 2011 from 30 to 600 km off the coast of Japan as part of initial mapping of the spread of contamination in the ocean. Cesium was extracted from unfiltered and filtered (<1.0 µm) seawater using an absorber based upon an organic polymer polyacrylonitrile (PAN) containing ammonium molybdophosphate (AMP) Sebesta and Stefula (J Radioanal Nucl Chem 140:15-21, 1990). The AMP-PAN resin can be counted directly using gamma spectroscopy for ¹³⁴Cs and ¹³⁷Cs. Stable ¹³³Cs was added to evaluate extraction efficiency and quantified by ICP-MS. Our 5 mL AMP-PAN resin column was on average 95 % efficient in the removal of cesium from 20 L samples at an avera 35 mL min⁻¹. Measured activities of ¹¹ ranged from a few Bq m⁻³ to >300 Bq n tion column can be adapted to different and easily used in the field.

Keywords Cesium · Fukushima · AMP-Gamma spectroscopy

Introduction

The Earthquake and following Tsunami o of Japan on March 11, 2011 severely nuclear reactors at the Fukushima Dai-Ich plant (NPP). The total direct release of ¹³⁷ environment by the damaged reactors was

Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

Jan Kameník · Henrieta Dulaiova · Ferdinand Šebesta · Kamila Šťastná

Received: 11 July 2012/Published online: 21 August 2012 © Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h⁻¹). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more Keywords Cesium · ¹³⁴Cs · ¹³⁷Cs · Seawater · Composite ion-exchangers

Introduction

Cesium concentration from larger sample volumes is usually required for radioanalytical determination of ¹³⁴Cs $(T_{1/2} = 2.07 \text{ years})$ and ¹³⁷Cs $(T_{1/2} = 30.08 \text{ years})$ in seawater. Some of the well-established methods include cesium adsorption on ammonium molybdophosphate (AMP) (e.g., [1–3]) and co-precipitation with various insoluble hexacyanoferrates(II) (e.g., [4–6]). Applications of these materials in chromatography columns for seawater analysis were reviewed by Gaur [7]. Insoluble hexacy-

¹³⁷Cs in seawater; references

Fig. 1 Column used for concentration of cesium from 100 L of seawater (internal diameter 42 mm, 25 mL of AMP-PAN)

J Radioanal Nucl Chem (2013) 296:841-846 DOI 10.1007/s10967-012-2007-4

Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

Jan Kameník · Henrieta Dulaiova · Ferdinand Šebesta · Kamila Šťastná

Received: 11 July 2012/Published online: 21 August 2012 © Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h⁻¹). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more Keywords Cesium · ¹³⁴Cs · ¹³⁷Cs · Seawater · Composite ion-exchangers

Introduction

Cesium concentration from larger sample volumes is usually required for radioanalytical determination of ¹³⁴Cs $(T_{1/2} = 2.07 \text{ years})$ and ¹³⁷Cs $(T_{1/2} = 30.08 \text{ years})$ in seawater. Some of the well-established methods include cesium adsorption on ammonium molybdophosphate (AMP) (e.g., [1–3]) and co-precipitation with various insoluble hexacyanoferrates(II) (e.g., [4–6]). Applications of these materials in chromatography columns for seawater analysis were reviewed by Gaur [7]. Insoluble hexacy-

¹³⁷Cs in seawater; references

Fig. 1 Column used for concentration of cesium from 100 seawater (internal diameter 42 mm, 25 mL of AMP-PAN)

J Radioanal Nucl Chem (2013) 296:841-846 DOI 10.1007/s10967-012-2007-4

Fast concentration of dissolved forms of cesium radioisotopes

Table MS	2 Cesium r	nples			
	Volume (L)	Average flow-rate (mL min ⁻¹)	Cs added (mg)	Recovery yield (%)	
AMP	PAN (acidif				
А	106	280	25	88.7 ± 0.3	
В	93	285	4	88.8 ± 0.4	
С	101	319	4	84.9 ± 0.5	
D	95	243	4	94.1 ± 0.3	ugust 2012
Е	98	326	4	86.3 ± 0.5	
F	96	298	4	85.7 ± 0.6	
KNiF	C-PAN (acid	ified seawater)			esium concentra-
А	97	287	4	92.4 ± 0.4	ested and adapted
В	98	288	4	94.4 ± 0.3	eawater. Concen-
С	101	293	4	93.0 ± 0.4	n large seawater
D	102	260	4	91.5 ± 0.5	using composite
Е	100	293	4	93.2 ± 0.5	with ammonium
KNiF	C-PAN (natu	iral seawater)			el hexacyanofer-
А	102	279	4	91.9 ± 0.5	ly, and polyacry-
В	100	250	4	92.7 ± 0.5	ecially designed
С	98	276	4	4 883+05	me (BV) 25 mL o 1,200 BV h^{-1}). ICP-MS analysis
D	101	291	4 4	91.6 ± 0.5	
Е	100	315		90.9 ± 0.5	le. Both absorbers
F	102	470	4	85.6 ± 0.6	n from large sea-

Keywords Cesium · 134Cs · 137Cs · Seawater · Composite ion-exchangers

Introduction

Cesium concentration from larger sample volumes is usually required for radioanalytical determination of 134Cs $(T_{1/2} = 2.07 \text{ years})$ and ¹³⁷Cs $(T_{1/2} = 30.08 \text{ years})$ in seawater. Some of the well-established methods include cesium adsorption on ammonium molybdophosphate (AMP) (e.g., [1-3]) and co-precipitation with various insoluble hexacyanoferrates(II) (e.g., [4-6]). Applications of these materials in chromatography columns for seawater analysis were reviewed by Gaur [7]. Insoluble hexacy-(KAERI 안국원사덕연구원

water samples. Kith C-1513 material was slightly more

¹³⁷Cs in seawater; procedure Elapsed time for analyzing the 60 kg of seawater? 4 hr excepting the measurement time Stable Cs (1 mg) 10 mL of 1 M NaOH Seawater 60 kg **AMP-PAN** x 8 channel (1.3 mL, BV) 10 mL min⁻¹ (0.1 M HNO₃) 40 mL min⁻¹ Elution (80 mL) **HPGe detector** (radiocesium) 50 **ICP-OES/MS** AMP-PAN 3 mL (BV) (Stable Cs) 40 C_f/C_i (%) 30 20 10 0 10 1 2 3 8 9 5 6 7 Δ 1 M NaOH (mL)

¹³⁷Cs in seawater; procedure

¹³⁷Cs in seawater; procedure

²⁰

Thank you

