RadWorkshop 2024 9-13th September PhD project funded by: Novel assays for 'difficult-to-measure' radionuclides in materials produced during nuclear decommissioning activities Inés Llopart Babot 09-09-2024 Vasile, M., Dobney, A., Boden, S., Leermakers, M., Qiao, J. Bruggeman, M., Warwick, P., Tarancón, A., Bagan, H., de Souza, V., Russell, B., Kolgomorova, S., Adriaensen, L., Lutter, G., Rades, E., Happel, S. # Radiological waste characterization **Background** Scope ³⁶Cl and ¹²⁹I ¹⁴⁷Pm and ¹⁵¹Sm ⁷⁹Se Summary # Radiological waste characterization # Which radionuclides can be expected? How can these radionuclides be quantified? **Non-destructive assay** "easy to measure" radionuclides #### **Destructive assay** "difficult to measure" radionuclides ²³⁴U ²³⁷Np ⁷⁹Se ¹³³Ba ²⁴¹Am ¹⁴⁷Pm ¹³⁷Cs ### **DTM** radionuclides "a radionuclide whose radioactivity is difficult to measure directly from the outside of the waste packages by non-destructive assay means" ISO standard 24390:2023 Scaling factor method ## Analytical methods required Sample treatment Chemical separation Measurement Homogenization Complete sample dissolution Sample representativeness ## Analytical methods required Sample treatment Chemical separation Measurement Pre-concentration Interference removal Time needed for the separation procedure - 1 Conditioning - 2 Sample loading - **3** Washing / rinsing - 4 Elution - Target radionuclide ## Analytical methods required Sample treatment Chemical separation Measurement **Detection limit** Effect of interferences Time needed for measurement ## Scope of the project #### 63 radionuclides required to be determined for category A waste disposal site | 3H | ⁵⁸ Co | ⁹³ Mo | 110mAg | ¹³⁵ Cs | 155Eu | 234U | ²⁴⁰ Pu | ²⁴² Cm | |------------------|------------------|--------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------| | ¹⁰ Be | ⁶⁰ Co | ⁹³ Zr | 125] | 137Cs | ²²⁶ Ra | 235U | ²⁴¹ Pu | ²⁴³ Cm | | 14C | ⁵⁹ Ni | ⁹⁴ Nb | 129 T | ¹⁴⁴ Ce | ²²⁹ Th | 236U | ²⁴² Pu | ²⁴⁴ Cm | | 35S | ⁶³ Ni | ⁹⁹ Tc | 131] | 147 Pm | ²³⁰ Th | 238П | ²⁴⁴ Pu | ²⁴⁵ Cm | | ³⁶ CI | ⁷⁹ Se | ¹⁰⁶ Ru | 125Sb | ¹⁵¹ Sm | ²³² Th | ²³⁷ Np | ²⁴¹ Am | ²⁴⁶ Cm | | ⁴¹ Ca | 85Kr | ¹⁰⁷ Pd | ¹²⁶ Sn | ¹⁵² Eu | ²³¹ Pa | ²³⁸ Pu | ^{242m} Am | ²⁴⁷ Cm | | ⁵⁴ Mn | ⁹⁰ Sr | ^{108m} Ag | 134Cs | ¹⁵⁴ Eu | 233Ц | ²³⁹ Pu | ²⁴³ Am | ²⁴⁸ Cm | (de Bock, 2019) Optimization and development of **novel assays** for the **determination** of the target radionuclides Solid sample preparation Use of extraction chromatography Measurement by LSC # ³⁶Cl and ¹²⁹I determination ¹⁴⁷Pm and ¹⁵¹Sm Sample treatment Chemical separation Measurement # ³⁶Cl and ¹²⁹I determination ¹⁴⁷Pm and ¹⁵¹Sm Sample treatment Chemical separation Measurement # ³⁶Cl and ¹²⁹I determination Sample treatment Chemical separation Measurement # Liquid Scintillation Counting ### ³⁶Cl and ¹²⁹I determination Sample treatment Chemical separation Measurement **Application** ¹⁴C, ³H, ⁶⁰Co, ¹³⁴Cs, ^{152,154}Eu **CL Resin TK-TcScint Resin** Sequential separation procedure with 2 TK-TcScint Resins # ³⁶Cl and ¹²⁹I determination ## ³⁶Cl and ¹²⁹I determination Sample treatment Chemical separation Measurement **Application** Comparison of ³⁶Cl measurement with different techniques **DL < clearance level** # Analytical methods 147 Pm and 151 Sm separation - **❖** Complete radiochemical separation ¹⁴⁷Pm/¹⁵¹Sm - ♦ Nd as ¹⁴⁷Pm carrier - Eu as interference Background Scope ³⁶Cl and ¹²⁹I # ¹⁴⁷Pm and ¹⁵¹Sm separation #### **DGA Resin, Normal** $0.5x15 \text{ cm} (50-100 \mu\text{m})$ # ¹⁴⁷Pm and ¹⁵¹Sm separation No Eu co-elution New approach Fewer solution volume for elution No need to use alcohol # ¹⁴⁷Pm and ¹⁵¹Sm separation #### **Challenges:** - Column size (thinner and larger) backpressure - Volume repeatability - Turnaround time #### **AUTOMATED SEPARATION SYSTEM** In-house prepared in # ¹⁴⁷Pm and ¹⁵¹Sm separation Volume accumulated reservoir (death volume) > reduce flow rate Death volume Resin wet Dilution of solutions loaded Delay on the elution of the lanthanides 147Pm and 151Sm New elution profiles for ¹⁴⁷Pm and ¹⁵¹Sm > radiochemical separation - Complete ¹⁴⁷Pm and ¹⁵¹Sm radiochemical separation - Reproducible results - Total turnaround time: 2 h 35 min - 86 mL loaded + 7 mL conditioning → 0,6 mL/min - Delay on ¹⁴⁷Pm and ¹⁵¹Sm elution - Additional 20 mL 0,25 M HNO₃ /10% EtOH needed # ¹⁴⁷Pm and ¹⁵¹Sm separation #### Application in reactor cooling water from a Boiling Water Reactor Previously used in Nordic inter-laboratory comparison + 13 Bq ¹⁴⁷Pm +13 Bq ¹⁵¹Sm + 0,5 mg Nd + 0,5 mg Sm Expected: ⁵⁴Mn, ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs Measured by gamma and LSC # ¹⁴⁷Pm and ¹⁵¹Sm separation #### Application in reactor cooling water from a Boiling Water Reactor Previously used in Nordic inter-laboratory comparison Expected: ⁵⁴Mn, ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs Measured by gamma and LSC # ¹⁴⁷Pm and ¹⁵¹Sm separation #### Application in reactor cooling water from a Boiling Water Reactor Previously used in Nordic inter-laboratory comparison ### On the determination of ⁷⁹Se 1 mg 6 Bq ⁷⁵Se stable Se Measured by Measured by gamma-ray SF-ICP-MS spectrometry **New SE Resin** **SE Resin** ↓ extractant **Prefilter Resin** bleeding Se retention ¹⁴⁷Pm and ¹⁵¹Sm # On the determination of ⁷⁹Se 1 mg 6 Bq ⁷⁵Se stable Se Measured by Measured by gamma-ray SF-ICP-MS spectrometry **SE Resin** Se retention **Prefilter Resin** ↓ extractant bleeding Disagreement between gamma-ray spectrometry and ICP-MS # Analytical methods On the determination of ⁷⁹Se # Analytical methods On the determination of ⁷⁹Se #### Principle of piazselenol formation $$(CH_3)_2N \longrightarrow NH_2 \qquad H_2 Se O_3 \qquad \left[(CH_3)_2N \longrightarrow NH \right] \qquad (CH_3)_2N \longrightarrow NH \qquad Se \qquad H^+$$ Anal. Chim. Acta, 27 (1962) 288-294 # Oxidation state fixation needed Background Scope ³⁶Cl and ¹²⁹I ¹⁴⁷Pr ¹⁴⁷Pm and ¹⁵¹Sm ⁷⁹Se Summary ## On the determination of ⁷⁹Se Different initial solutions treated with oxidant and reducing agents Batch experiment → 50 mg SE Resin - ↑ Dw loading sample in H₂O - **Dw** loading samples oxidized when initial solution was in H₂O - ~Dw loading samples in different conditions when initial solution was in 2,5 M HCl # Analytical methods On the determination of ⁷⁹Se Initial solution (2,5 M HCl) treated with different chemicals - ↑ ↑ Dw loading sample with PF Resin - More differences on Dw values when passing through the solution on a PF Resin ¹⁴⁷Pm and ¹⁵¹Sm # On the determination of ⁷⁹Se Initial solution (2,5 M HCl) treated with different chemicals and - ~100% retention in SE-PF Resin when loading the reference (2,5 M HCl) and sample treated with H₂O₂ - Some retention of Se on PF Resin # Analytical methods On the determination of ⁷⁹Se Stability of SE Resin over time Promising results on Se retention (even in oxidant media) # **Analytical methods** On the determination of ⁷⁹Se #### pH effect on Se retention - Bosca & Mot, 2021 \rightarrow relevance of pH on piazselenol formation (**pH~1,3**) - Dw ≥ 10³ when pH~1,3 (no dependence on sample pretreatment) ## On the determination of ⁷⁹Se Batch experiments + elution profiles with specific Se oxidation state standards - pН - Acid concentration - Volume Possibility to apply PS Resins on Se radiochemical separation and measurement Investigation of interferences and development of a method for Se determination in different samples Summary #### **Overview** #### New analytical methods required Selection of resins, equipment and measurement techniques based on availability and needs Summary Reference materials needed to validate the different methods # Thank you for your attention!! **Questions?** illopart@triskem.fr