RadWorkshop 2024 9-13th September

PhD project funded by:

Novel assays for 'difficult-to-measure' radionuclides in materials produced during nuclear decommissioning activities

Inés Llopart Babot

09-09-2024

Vasile, M., Dobney, A., Boden, S., Leermakers, M., Qiao, J. Bruggeman, M., Warwick, P., Tarancón, A., Bagan, H., de Souza, V., Russell, B., Kolgomorova, S., Adriaensen, L., Lutter, G., Rades, E., Happel, S.

Radiological waste characterization

Background

Scope

³⁶Cl and ¹²⁹I

¹⁴⁷Pm and ¹⁵¹Sm

⁷⁹Se

Summary

Radiological waste characterization

Which radionuclides can be expected?

How can these radionuclides be quantified?

Non-destructive assay

"easy to measure" radionuclides

Destructive assay

"difficult to measure" radionuclides

²³⁴U
 ²³⁷Np
 ⁷⁹Se
 ¹³³Ba
 ²⁴¹Am
 ¹⁴⁷Pm
 ¹³⁷Cs

DTM radionuclides

"a radionuclide whose radioactivity is difficult to measure directly from the outside of the waste packages by non-destructive assay means"

ISO standard 24390:2023

Scaling factor method

Analytical methods required

Sample treatment

Chemical separation

Measurement

Homogenization

Complete sample dissolution

Sample representativeness

Analytical methods required

Sample treatment

Chemical separation

Measurement

Pre-concentration

Interference removal

Time needed for the separation procedure

- 1 Conditioning
- 2 Sample loading
- **3** Washing / rinsing
- 4 Elution
- Target radionuclide

Analytical methods required

Sample treatment

Chemical separation

Measurement

Detection limit

Effect of interferences

Time needed for measurement

Scope of the project

63 radionuclides required to be determined for category A waste disposal site

3H	⁵⁸ Co	⁹³ Mo	110mAg	¹³⁵ Cs	155Eu	234U	²⁴⁰ Pu	²⁴² Cm
¹⁰ Be	⁶⁰ Co	⁹³ Zr	125]	137Cs	²²⁶ Ra	235U	²⁴¹ Pu	²⁴³ Cm
14C	⁵⁹ Ni	⁹⁴ Nb	129 T	¹⁴⁴ Ce	²²⁹ Th	236U	²⁴² Pu	²⁴⁴ Cm
35S	⁶³ Ni	⁹⁹ Tc	131]	147 Pm	²³⁰ Th	238П	²⁴⁴ Pu	²⁴⁵ Cm
³⁶ CI	⁷⁹ Se	¹⁰⁶ Ru	125Sb	¹⁵¹ Sm	²³² Th	²³⁷ Np	²⁴¹ Am	²⁴⁶ Cm
⁴¹ Ca	85Kr	¹⁰⁷ Pd	¹²⁶ Sn	¹⁵² Eu	²³¹ Pa	²³⁸ Pu	^{242m} Am	²⁴⁷ Cm
⁵⁴ Mn	⁹⁰ Sr	^{108m} Ag	134Cs	¹⁵⁴ Eu	233Ц	²³⁹ Pu	²⁴³ Am	²⁴⁸ Cm

(de Bock, 2019)

Optimization and development of **novel assays** for the **determination** of the target radionuclides

Solid sample preparation

Use of extraction chromatography

Measurement by LSC

³⁶Cl and ¹²⁹I determination

¹⁴⁷Pm and ¹⁵¹Sm

Sample treatment

Chemical separation

Measurement

³⁶Cl and ¹²⁹I determination

¹⁴⁷Pm and ¹⁵¹Sm

Sample treatment

Chemical separation

Measurement

³⁶Cl and ¹²⁹I determination

Sample treatment

Chemical separation

Measurement

Liquid Scintillation Counting

³⁶Cl and ¹²⁹I determination

Sample treatment Chemical separation

Measurement

Application

¹⁴C, ³H, ⁶⁰Co, ¹³⁴Cs, ^{152,154}Eu

CL Resin TK-TcScint Resin

Sequential separation procedure with 2 TK-TcScint Resins

³⁶Cl and ¹²⁹I determination

³⁶Cl and ¹²⁹I determination

Sample treatment Chemical separation

Measurement

Application

Comparison of ³⁶Cl measurement with different techniques

DL < clearance level

Analytical methods 147 Pm and 151 Sm separation

- **❖** Complete radiochemical separation ¹⁴⁷Pm/¹⁵¹Sm
 - ♦ Nd as ¹⁴⁷Pm carrier
 - Eu as interference

Background Scope ³⁶Cl and ¹²⁹I

¹⁴⁷Pm and ¹⁵¹Sm separation

DGA Resin, Normal

 $0.5x15 \text{ cm} (50-100 \mu\text{m})$

¹⁴⁷Pm and ¹⁵¹Sm separation

No Eu co-elution

New approach

Fewer solution volume for elution

No need to use alcohol

¹⁴⁷Pm and ¹⁵¹Sm separation

Challenges:

- Column size (thinner and larger) backpressure
- Volume repeatability
- Turnaround time

AUTOMATED SEPARATION SYSTEM

In-house prepared in

¹⁴⁷Pm and ¹⁵¹Sm separation

Volume accumulated reservoir (death volume)

> reduce flow rate

Death volume

Resin wet

Dilution of solutions loaded

Delay on the elution of the lanthanides

147Pm and 151Sm

New elution profiles for ¹⁴⁷Pm and ¹⁵¹Sm

> radiochemical separation

- Complete ¹⁴⁷Pm and ¹⁵¹Sm radiochemical separation
- Reproducible results
- Total turnaround time: 2 h 35 min
 - 86 mL loaded + 7 mL conditioning → 0,6 mL/min

- Delay on ¹⁴⁷Pm and ¹⁵¹Sm elution
- Additional 20 mL 0,25 M HNO₃ /10% EtOH needed

¹⁴⁷Pm and ¹⁵¹Sm separation

Application in reactor cooling water from a Boiling Water Reactor

Previously used in Nordic inter-laboratory comparison

+ 13 Bq ¹⁴⁷Pm +13 Bq ¹⁵¹Sm + 0,5 mg Nd + 0,5 mg Sm

Expected: ⁵⁴Mn, ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs

Measured by gamma and LSC

¹⁴⁷Pm and ¹⁵¹Sm separation

Application in reactor cooling water from a Boiling Water Reactor

Previously used in Nordic inter-laboratory comparison

Expected: ⁵⁴Mn, ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs

Measured by gamma and LSC

¹⁴⁷Pm and ¹⁵¹Sm separation

Application in reactor cooling water from a Boiling Water Reactor

Previously used in Nordic inter-laboratory comparison

On the determination of ⁷⁹Se

1 mg 6 Bq ⁷⁵Se stable Se Measured by Measured by gamma-ray SF-ICP-MS spectrometry

New SE Resin

SE Resin

 ↓ extractant **Prefilter Resin** bleeding

Se retention

¹⁴⁷Pm and ¹⁵¹Sm

On the determination of ⁷⁹Se

1 mg 6 Bq ⁷⁵Se stable Se Measured by Measured by gamma-ray SF-ICP-MS spectrometry

SE Resin

Se retention

Prefilter Resin

 ↓ extractant bleeding

Disagreement between gamma-ray spectrometry and ICP-MS

Analytical methods On the determination of ⁷⁹Se

Analytical methods On the determination of ⁷⁹Se

Principle of piazselenol formation

$$(CH_3)_2N \longrightarrow NH_2 \qquad H_2 Se O_3 \qquad \left[(CH_3)_2N \longrightarrow NH \right] \qquad (CH_3)_2N \longrightarrow NH \qquad Se \qquad H^+$$

Anal. Chim. Acta, 27 (1962) 288-294

Oxidation state fixation needed

Background Scope ³⁶Cl and ¹²⁹I ¹⁴⁷Pr

¹⁴⁷Pm and ¹⁵¹Sm

⁷⁹Se

Summary

On the determination of ⁷⁹Se

Different initial solutions treated with oxidant and reducing agents

Batch experiment → 50 mg SE Resin

- ↑ Dw loading sample in H₂O
- **Dw** loading samples
 oxidized when initial
 solution was in H₂O
- ~Dw loading samples in different conditions when initial solution was in 2,5 M HCl

Analytical methods On the determination of ⁷⁹Se

Initial solution (2,5 M HCl) treated with different chemicals

- ↑ ↑ Dw loading sample with PF Resin
- More differences on Dw values when passing through the solution on a PF Resin

¹⁴⁷Pm and ¹⁵¹Sm

On the determination of ⁷⁹Se

Initial solution (2,5 M HCl) treated with different chemicals and

- ~100% retention in SE-PF
 Resin when loading the
 reference (2,5 M HCl) and
 sample treated with H₂O₂
- Some retention of Se on PF
 Resin

Analytical methods On the determination of ⁷⁹Se

Stability of SE Resin over time

Promising results on Se retention (even in oxidant media)

Analytical methods On the determination of ⁷⁹Se

pH effect on Se retention

- Bosca & Mot, 2021 \rightarrow relevance of pH on piazselenol formation (**pH~1,3**)
- Dw ≥ 10³ when pH~1,3 (no dependence on sample pretreatment)

On the determination of ⁷⁹Se

Batch experiments + elution profiles with specific Se oxidation state standards

- pН
- Acid concentration
- Volume

Possibility to apply PS Resins on Se radiochemical separation and measurement

Investigation of interferences and development of a method for Se determination in different samples

Summary

Overview

New analytical methods required

Selection of resins, equipment and measurement techniques based on availability and needs

Summary

Reference materials needed to validate the different methods

Thank you for your attention!!

Questions?

illopart@triskem.fr

