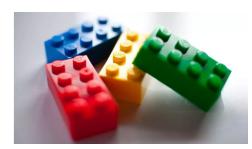
Update on resins and methods for the purification and QC of radionuclides for use in diagnostics and therapy 2025 Australasian Cyclotron Users Group Heidelberg (Australia) Steffen Happel 22/05/2025

2025 Australasian Cyclotron Users Group

TrisKem International

- Based in Rennes (France)
- Independent company since 2007 (before part of Eichrom)
- Main product line: extraction chromatographic resins.
 - Also producing other separation materials
- Staff: 25
- R&D and TechSupport group:
 - 3 RadChem PhD, 2 Technicians (+ 1 PhD student and 1 master student)
- R&D: Development of new resins, techniques and applications
- Products used in several domains

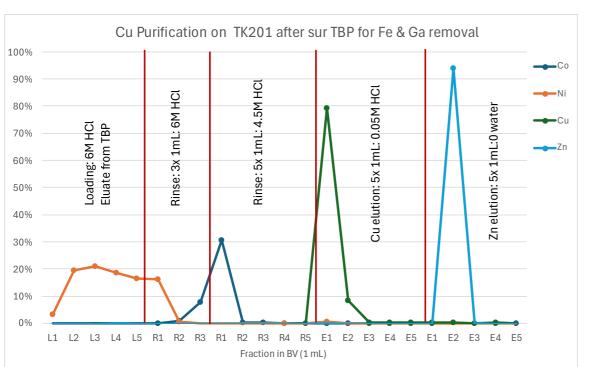


Research interests - Radiopharmacy

- Radionuclide production/purification
 - Resin and method development 'cold'
 - Cooperation with cyclotrons & reactors (NL, RN producers,...)
 - Equipment provider (targetry, synthesizer,...)
 - Separation of radionuclides from irradiated targets
 - Diagnostics: Zr-89, Cu-61/4, Ga-68, Ge-68, Ti-44/5, Tc-99m, Sc-43/4...
 - Therapy: Ac-225, Lu-177, Tb-161, Cu-67, Pb-212, Sn-117m, Sc-47...
 - Requirements for resins:
 - No selectivity for target material, high selectivity for product
 - Elution under 'soft' conditions in small volume => labelling/injection
 - Fast kinetics
 - Combining several resins can facilitate the separation
 - Conversion (high acid to dilute acid)
 - Removal of impurities upfront

Research interests - Radiopharmacy

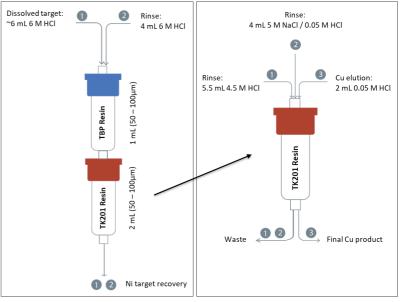
- Quality control
 - Cartridge based methods (e.g. Sr-90 in Y-90,...)



- New option "TK-ElScint cartridges" (impregnated plastic scintillator beads)
- "Sheets"
 - p.ex. DGA sheets (functionalized TLC for Ra-223, Ga-68, Pb-212,....
 => CVUT Prague), CU iSheets,...
- Decontamination of effluents/waste (Ge-68, lanthanides, radioiodine,...)
- Radiolysis stability (polymer, radical scavengers,...)
- Determination of radionuclides (mainly used in therapy, generally Lu-177 and Ac-225) in environmental and bioassay samples 4

Cu-61/4 separation on TK201

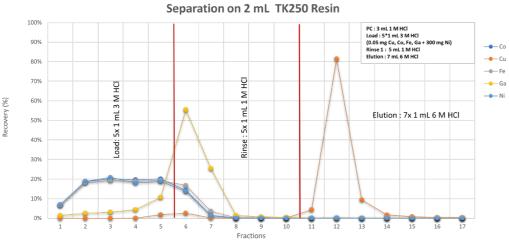
- Cu-61/4 separation from solid Ni targets
 - Target dissolution in high HCl => 6M HCl
 - TK201 retains Cu, Zn, Co, Fe, Ga at 6M HCl
 - Difficult to get a clean Cu fraction in dilute HCl
 - Run through TBP (or TK400) for Fe/Ga removal
 - Separation of remaining radionuclides on TK201
 - Preferably avoid water (risk of Zn co-elution)


Svedjehed et al. EINMMI Radiopharmacy and Chemistry (2020) 5:21 https://doi.org/10.1186/s41181-020-00108-7 EJNMMI Radiopharmacy and Chemistry

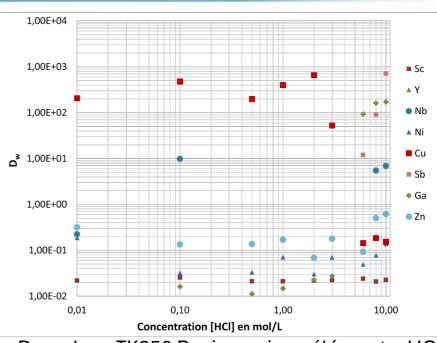
Open Access

RESEARCH ARTICLE

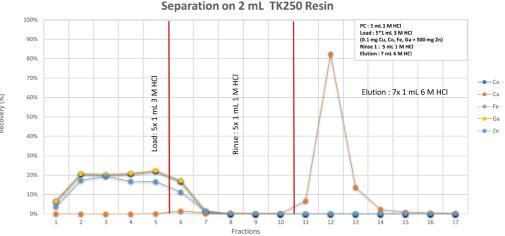
Automated, cassette-based isolation and formulation of high-purity [⁶¹Cu]CuCl₂ from solid Ni targets



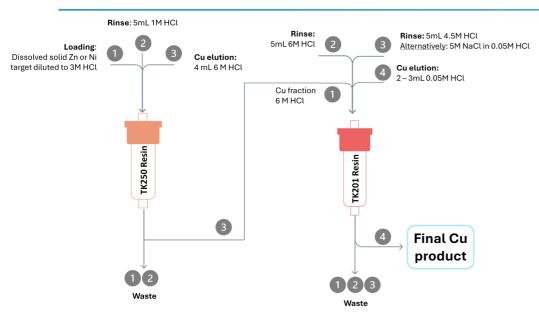
- Svedjehed et al. use of NaCl/HCl for better pH control of eluate
- Also being used for Zn separation
- Not applicable to solid Zn targetş



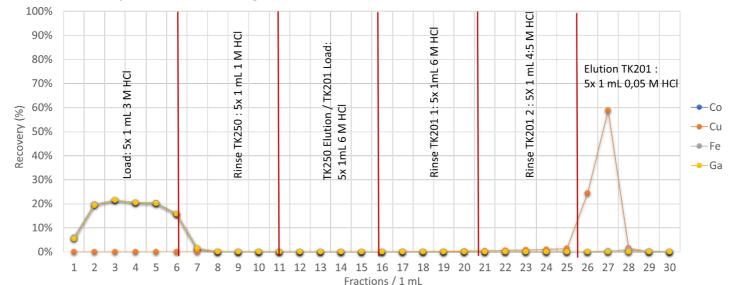
Upcoming: TK250 Resin


- CU Resin high selectivity for Cu over Zn but loading from pH >2 required
- Difficult to automize in case of solid Zn targets
- Upcoming TK250 Resin:
- Cu retention from low acid up to 3M HCl
- No selectivity for Ni and Zn
 - Tested up to 300mg each
- Cu elution in 6M HCl
- Rather low Cu capacaity (~0.13mg/g)

Cu separation from 300 mg Ni on 2mL TK250 Resin



Dw values TK250 Resin, various éléments, HCl


Cu separation from 300 mg Zn on 2mL TK250 Resin

Upcoming: TK250 Resin

- D_f typically >10³ 10⁴
- 6M HCl to low HCl on TK201 Resin
- Next steps:
 - Optimisation of resin composition
 - Upscale and stability testing
- Integration in sequential separation scheme for Cu and Ga from Zn targets e.g. with TBP Resin (for Ga)

Cu separation from 300 mg Zn on 2 mL TK250 Resin and conversion on 2 mL TK201 Resin

Zr-89 chloride via TBP and TK400

	Nuclear Medicine and Biology 136-137 (2024) 108943	
	Contents lists available at ScienceDirect	A NUCLEAR MEDICINE BIOLOGY
	Nuclear Medicine and Biology	
ELSEVIER	journal homepage: www.elsevier.com/locate/nucmedbio	

$[{}^{89}\text{Zr}]\text{ZrCl}_4$ for direct radiolabeling of DOTA-based precursors *

Serge K. Lyashchenko^{a,b,*}, Tuan Tran^a, Steffen Happel^c, Hijin Park^a, David Bauer^b, Kali Jones^b, Tullio V. Esposito^b, NagaVaraKishore Pillarsetty^b, Jason S. Lewis^{a,b,d}

^a Radiochemistry and Molecular Imaging Probe Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA ^b Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA ^c Trisken International, Inc., USA

^d Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, U

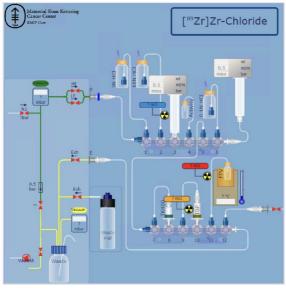


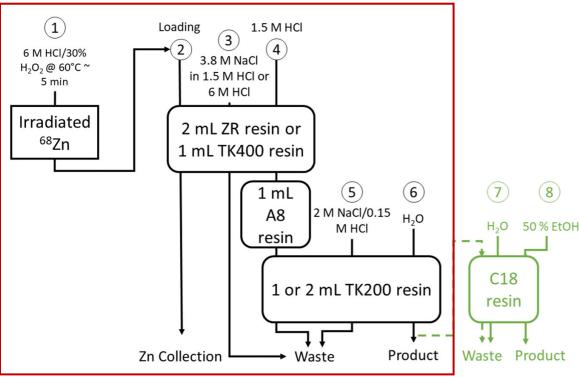
Table 1. Summary of Measured Iron Content in TBP-purified solutions.

Purification Intervention	Measured Iron Content (ppm)	Source
No TK400, TBP only	32.7–38.8 (n = 6)	Graves et al.
Single TK400, followed by TBP	8 (n = 3)	This Study
Double TK400, followed TBP	< 1 (n = 3)	This study

- Improvement of method published by Graves et al. (TBP only) => insufficient Fe removal
- Load and rinse on TBP Resin at ~10M HCl, elution in dilute HCl
- Use of 2xTK400 before TBP Resin for Fe removal
- Production of 11.1 14.4 GBq of [⁸⁹Zr]Zr-PSMA-617 and [⁸⁹Zr]Zr-PSMA-I&T
- Apparent specific activities of 11.1 14.4 MBq/µg
 - 2–3x more than before at industrial quantities.
- On-going:
 - Use of TK201 instead of TK400 for impurities removal (catch additional impurities? e.g. Cu)
 - Alternative methods for Zr oxalate conversion to Zr chloride (avoiding QMA)

Table 2. Summary of Radionuclide Purity Measurements in [89Zr]ZrCl4 Solution.

Batch	[⁸⁹ Zr]ZrCl4 - Batch 1	[⁸⁹ Zr]ZrCl4 - Batch 2	[⁸⁹ Zr]ZrCl4 - Batch 3	[⁸⁹ Zr]ZrCl4 - Batch 4
Radionuclidic Purity	≥99.9%	≥99.9%	≥99.9%	≥99.9%
% of ⁸⁸ Zr	6.9×10 ⁻¹⁰ %	2.9×10 ⁻¹⁰ %	4.7×10 ⁻⁹ %	1.2×10 ⁻⁸ %
% of ⁸⁸ Y	3.6×10 ⁻¹⁰ %	2.0×10^{-10} %	2.2×10 ⁻⁹ %	5.1×10 ⁻⁹ %


Ga separation on TK400 Resin

TK400 Resin => use for Ga solid Zn targets (alternative to ZR Resin)

- Ga retention on TK400 from high HCl, elution in low HCl
- No Zn retention
- Faster kinetics than ZR Resin

W. Tieu et al. use of single TK400 cartridge for solid Zn targets (purity lower than ZR/TK200)

Svedjehed et al. use of TK400/A8/TK200 (all 1mL) for solid Zn targets

On-going:

- Use of TK201 instead of TK200 (idea by Bryce Nelson)
 - Potentially better Zn removal
- Improvement of TK400 Resin / Ga yields (Svedjehed: ~80%)

Demystifying solid targets: Simple and rapid distribution-scale production of [$^{68}Ga]GaCl_3$ and [$^{68}Ga]Ga-PSMA-11$

Johan Svedjehed, Martin Pärnaste, Katherine Gagnon st

Cyclotrons and TRACERcenter, GEMS PET Systems AB, GE Healthcare, Uppsala, Sweden

- Requests for cartridge based separation of At from Bi targets in HNO₃. Resin approach already used by Burns et al. (3-octanone)
- Eriksen et al. showed At separation from Bi possible in HNO₃ via LLX using Octanol (=> TK400 Resin)
- Tereshatov et al. tested several extraction chromatographic resins for At separation from Bi incl. TK400
- At elution via alcohol (removal of org. phase + At from resin)
- TK400 and three additional resins currently being tested ("TK401", "TK402", TK200) – standard and new support
- Elution via NaOH possible?
- Currently shipping samples
- Also working on resins for Rn-211/At-211 generator

Chemical Engineering Journal Volume 464, 15 May 2023, 142742 EJ

Mechanism of astatine and bismuth sorption on extraction chromatography resins from nitric acid media

Under development: range of impregnated membrane filters

Coups

Upcoming: impregnated membrane filters ('Discs')

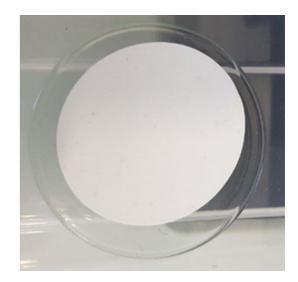
Several Discs under development and beta testing:

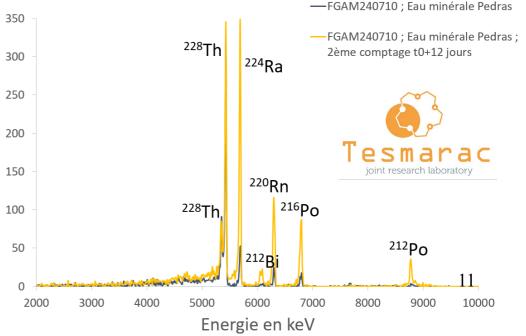
≻TK100, TK201, CU , GA, TK101...

≻25mm and 47mm diameter

First Disc in range: TK-GrossAlpha Disc

=> Alpha measurements


pH 1 - 2, typically up to 100mL samples


Filtration (1 – 10mL/min)

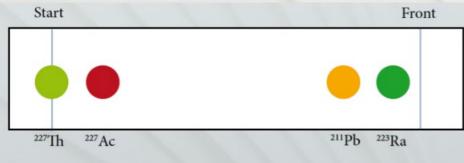
High retention of alpa emitters

- Mainly retained on the surface
- Suprisingly good resolution

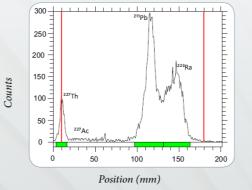
Discs glued on steel support => alpha spec Presence of Th or Ra in QC samples?

DGA Sheets/iSheets

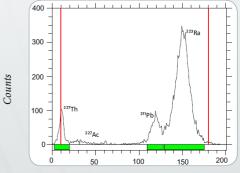
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE


TO-DGA (normal DGA) and TEH-DGA (branched DGA) impregnated TLC paper

• Developed at CVUT (Kozempel et al.)


QC of radionuclides and generator eluents (p.ex. Ra-223, Ac-225/Bi-213, Pb-212, Ge-68/Ga-68 ...)

• TLC scanner or radiometer/LSC or HPGe after cutting


Run under acidic conditions => radionuclidic purity

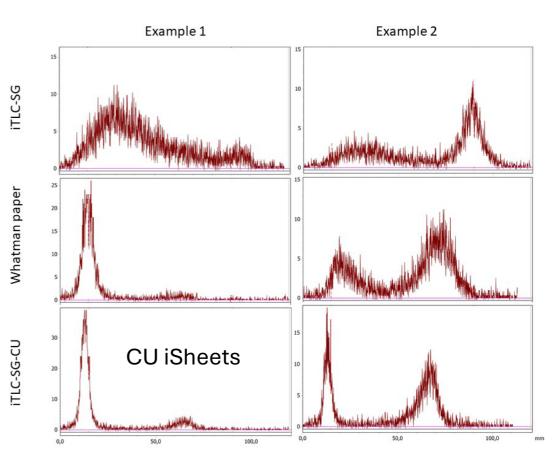
A scheme of chromatographic separaton of mixture of ²²⁷Ac and his daugther's niclides. ²²⁷Th remains on start, ²²⁷Ac has the retenton factor ca 0.2, ²¹¹Pb ca 0.7 and ²²³Ra ca 0.9.

Radiochromatogram measured immediately after separaton. Low abundant radiatons of ²²⁷Ac were not detected.

Position (nn) Radiochromatogram measured one hour afer separaton. Decay and ingrowth of ²¹¹Pb is clearly visible.

12

• Now also available based on iTLC support (faster development, higher DGA load)


=> DGA iSheets (iSheets = based on iTLC paper)

•2D TLC for radionuclide screening?

CU iSheets

- Poster presented at Terachem 2022 (Svedjehed et al.)
- QC of Cu radiolabeled peptides (labeled vs free Cu)
 - Shown: [⁶¹Cu]Cu-NOTA-octreotide
- Spotting/run on three different papers after labeling:
 - Whatman and iTLC without modification and
 - CU extractant impregnated iTLC paper.
- Both iTLC paper (impregnated/nonimpregnated) developed in less than 10min, Whatman took 25 – 30 min.
- CU extractant impregnated iTLC paper showed superior resolution

- Other systems under development /testing
- Next: TK213 (Ac, Lu)

Some other on-going projects

- Ac purification via TK221 (or TK222)
- Ra purification and recycling
 - TK101/TK102 (Ra/Ba separation)
 - Development of new Ra Resins
- Upscale of radiolanthanide separations (multi-gram): Lu-177 and Tb-161
- Tc-99 via cyclotron (TK202, C8 and AlOxA)
- Other radiometals
 - Ge, Hg, Ag, Pd,...
- Rapid QC
 - Discs, TK-ElScint cartridges (plastic scintillator beads based)

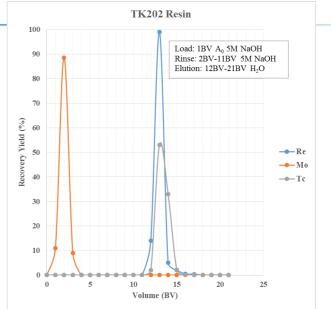
- Decontamination
 - Effluents and reaction wastes
 - I, Ge, Lu, O-18...
- Fate' of RN in the environment
 - Separation methods
 - Mainly longer lived RN (=> therapy)
 - Ac-225/7, Lu-177(m), radioiodine,...
 - Quantification
- Rn-211/At-211 generator
- Microfluidics
- Other 'geometries' &
- 'Non-resin' separation materials
- Hydrometallurgy
- Analytical applications

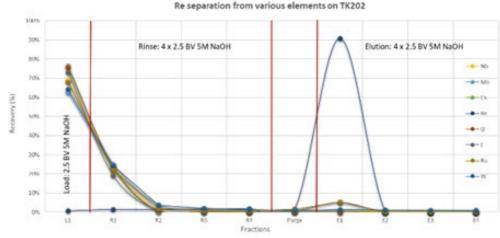
Thank you for your attention!

Interested in collaborations? shappel@triskem.fr

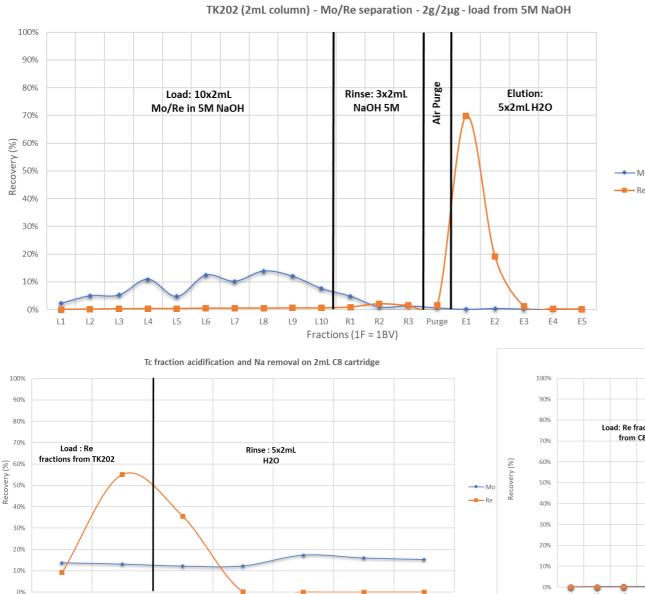
SUBSCRIBE TO OUR NEWSLETTER

To keep updated with our latest developments, news and agenda for a year, subscribe to the TrisKem Info here




TK202 Resin

- Tc retention from high NaOH (5 7M)
 - Dissolved Mo targets
 - Increased Tc (Re) retention at higher Mo concentration
 - Clean separation from other elements tested
- Re used as homologue
- Elution in small volume of water
 - Eluate will still alkaline and will contain Na
 - Pass through CEX for 'neutralisation' and Na⁺ removal and through
 - aluminium oxide for trace Mo removal and recovery as 0.9% NaCl solution



Re/Tc separation from Mo on TK202 Resin

Re separation from selected elements on 2 mL TK202 Resin cartridge, load and rinse at 1 BV/min, elution at 0.25 BV/min $_6$

Tc-99m via cyclotron route

L1

L2

R1

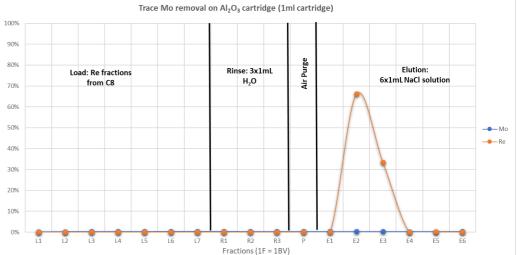
R2

Fractions (1F = 1BV)

R3

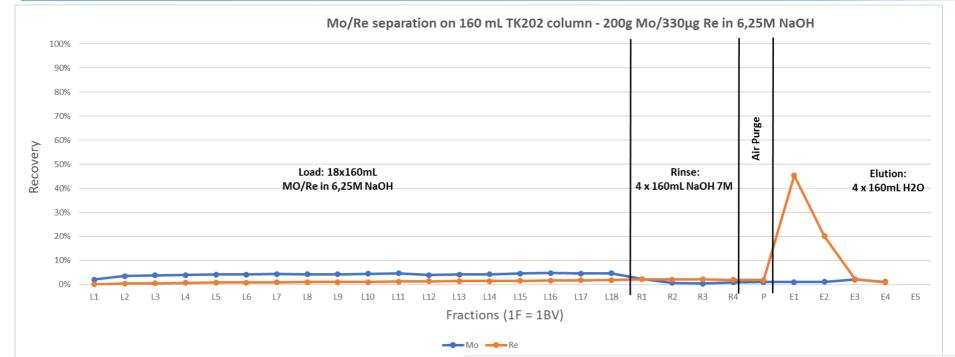
R4

R5


Tests performed cold with 2g Mo and 2 µg Re

- 2 mL TK202 cartridge •
- 2 mL C8 cartridge

– Mc

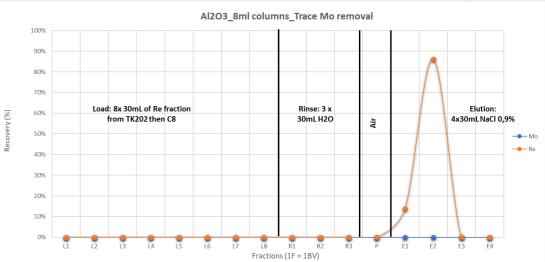

1 mL AIOxA cartridge •

Method similar to Zeisler et al. High Re yield (~90%) in 2-3mL 0.9% NaCl solution

Tc-99m from large Mo targets

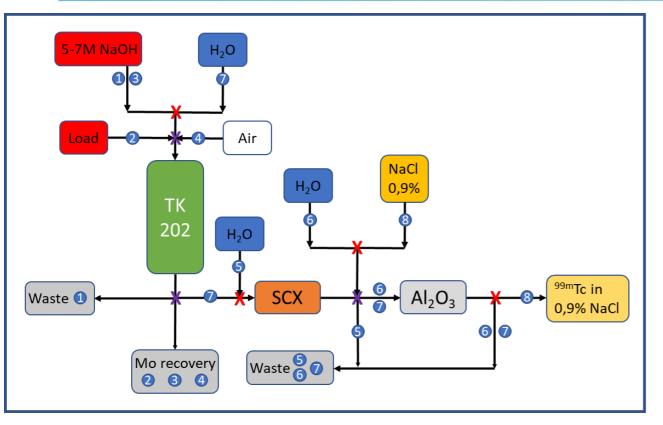
Test with 200g Mo

~160 mL TK202 column

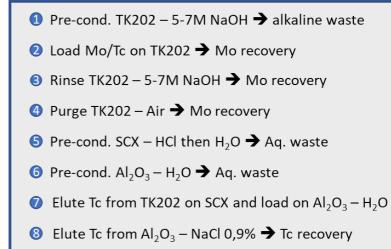

Load from 6 - 7M NaOH - elution in water

Pass through C8 cartridge for acidification and

Na removal

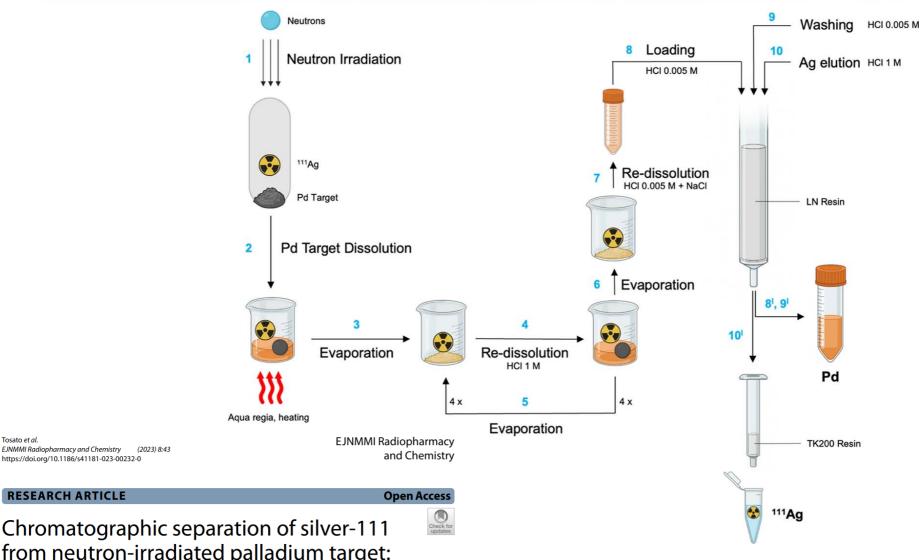

Final concentration/conversion to 0.9% NaCl or

8 mL AlOxA cartridge



Tc-99m separation from Mo targets – suggested scheme (similar to Zeisler et al.)

TK202 : 35-75 or 75-150μm
X : 3-ways valve
X : 4-ways valve
SCX : Strong Cation Exchange
Al ₂ O ₃ : Acidic Alumina



Developed with ReO₄⁻ as TcO₄⁻ surrogate

Re recovered on saline solution from alkaline

Separation with 2g Mo → From 20mL to 2mL Separation with 200g Mo → From 3L to 20mL

Ag-111 from Pd targets – LN/TK200

from neutron-irradiated palladium target: toward direct labeling of radiotracers

Tosato et al

EJNMMI Radiopharmacy and Chemistry

RESEARCH ARTICLE

https://doi.org/10.1186/s41181-023-00232-0

Marianna Tosato^{1,2}, Andrea Gandini³, Steffen Happel⁴, Marine Bas⁴, Antonietta Donzella^{5,6}, Aldo Zenoni^{5,6}, Andrea Salvini³, Alberto Andrighetto⁷, Valerio Di Marco² and Mattia Asti^{1*}¹⁰