

Bestimmung von Nb-93m, Zr-93 und Sn-121m in einer Zircaloy-Probe mittels LSC

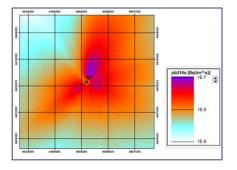
Juliane Uhlmann, Holger Hummrich

Eurofins IAF-Radioökologie GmbH

- Gegründet 1993, aus Kernforschungszentrum Rossendorf hervorgegangen (Prof. Funke und Team) → 32 Jahre Erfahrung in der Radionuklidanalyse
- Als Labor spezialisiert auf Radioaktivität (keine "chemischen Elemente" und keine stabilen Isotope)
- Etwa 30 Mitarbeiter, interdisziplinär aufgestellt
- Seit Juni 2024 gehört die IAF-Radioökologie GmbH zur globalen Eurofins-Laborgruppe.

Breites Spektrum von Matrices und Nukliden

- Vollständige Abdeckung natürlicher Nuklide (NORM, Lebensmittel, Futtermittel, Boden, Wasser usw.)
- Nahezu alle Matrices: Feststoffe, Metalle/Legierungen (z.B. Zircaloy),
 Organische Flüssigkeiten (REE-Aufbereitung),...
- Aktuell sehr viele Proben zur Bestimmung von biogenem Kohlenstoff über die Messung von C-14
- Spezialgebiet: Bestimmung von DTM (difficult-to-measure) Nukliden, wie z.B.: Cl-36, Ca-41, Ni-59, Mo-93, I-129, Pm-147, Sm-151, Pa-231, Np-237, Cf-249
- Die flexible Akkreditierung ermöglicht es uns, neue Methoden vor der Genehmigung durch die Akkreditierungsstelle anzubieten.
- Jüngste Errungenschaft: Bestimmung von Cs-135 komplexe Methode unter Beteiligung der Dänischen Technischen Universität (DTU, Lyngby) und des TRIGA Mainz, Verwendung von AMP-PAN resin, Bestimmung mittels ICP-MS-MS oder Neutronenaktivierung


Cs-Elution von AMP-PAN resin



Sonstige Aktivitäten

Atmosphärische Ausbreitungsmodelle

Beratung von Regierungen und Behörden

Radionuklidbilanzen, Studien (BfS)

F&E

Öffentlichkeitsarbeit zum Thema Radioaktivität, Radon

Radon in Innenräumen und Böden

Messgeräte-Ausstattung (Auswahl)

- 18 Gammaspektrometer
 - Incl. In-situ-Gammaspektrometer
- 40 Alphaspektrometer
- 5 LSC (2 Quantulus 1220, 2 Tricarb 3170, 1 "Ulla" Hidex
- 2 Low-level Alpha/Beta Proportionalzähler
- Gittter-Ionisationskammer
- 2 Anlagen zur elektrolytischen Tritiumanreicherung
- H3-/Kr-85-Monitore
- 100+ Rn-222-Monitore

Aufgabenstellung

- Im Rahmen der Abfallcharakterisierung in einem Rückbauprojekt war ein Bauteil aus Zircaloy zu analysieren. Gefragt waren u.a. die Nuklide Zr-93, Nb-93m und Sn-121m
- Zircaloy ist eine Metalllegierung, die zu über 90 % aus Zirkonium besteht und weitere Zusätzen wie Zinn, Eisen, Chrom, Nickel und Niob enthalten kann.
- Zircaloy zeichnet sich durch seinen geringen Einfangquerschnitt für thermische Neutronen sowie durch eine hohe Beständigkeit gegenüber Temperatur, Korrosion und Strahlung aus. Daher werden Zircaloy-Typen in der Kerntechnik verwendet, beispielsweise als Hüllrohre für Kernbrennstoffe.
- Durch die Bestrahlung des Zircaloys im Kernreaktor entstehen verschiedene Radionuklide. Typische Radionuklide in aktiviertem Zircaloy sind Zr-93, Nb-93m/94, Sn-121m und Ni-59/63. Einige davon sind sehr langlebig, wie etwa Zr-93 (Halbwertszeit: 1,6 × 10⁶ Jahre) und Ni-59 (Halbwertszeit: 7,6 × 10⁴ Jahre).
- Die Bestimmung von Zr-93, Nb-93m und Sn-121m mittels Flüssigszintillationszählung (LSC) erfordert eine vollständige Trennung dieser Nuklide voneinander sowie von anderen interferierenden Radionukliden, wie z. B. Ni-63, das in der vorliegenden Probe in Aktivitätskonzentrationen im Bereich von MBq/g vorkommt.

Aktivitätsinventar

Nuclide	A _{sp} [Bq/g], 16.11.2023
Ni-59	4.3E+04 (16%)
Ni-63	4.2E+06 (16%)
Fe-55	< 6.0E+01
Co-60	2.3E+02 (11%)
Cs-137	7.1E+00 (26%)
Nb-94	3.8E+03 (11%)
Sn-121m (γ)	3.3E+03 (11%)
further detectable nuclides	H-3 (2E+01), C-14 (1E+02), Ag- 108m (2E+00), Sb-125 (2E+00), Eu-152 (1E+00)

Nb-93m und Nb-94

- Nb ist als Element in wechselnden Mengen im Reaktorstrukturkomponenten enthalten (z.B. Inconel, Zircaloy)
- Nb-94 ist ein langlebiger Beta- und Gammaemitter ($t_{1/2} = 2x10^4$ Jahre), es wird über 93 Nb(n,γ) 94 Nb aus Nb-93 gebildet.
- Nb-93m (t_{1/2} = 16 Jahre) entsteht über
 ⁹³Nb(n,n')^{93m}Nb aus der Aktivierung von Nb und aus dem Betazerfall von ⁹³Zr→ ^{93m}Nb+β⁻.
- Die Peaks von Nb-94 im Gammaspektrum sind manchmal klein im Vergleich zu anderen Nukliden (Cs-137, Co-60) – eine Nb-Abtrennung kann auch die Nachweisgrenze für Nb-94 verbessern
- Nb-93m hat charakteristische Röntgenstahlung bei etwa 16,6 keV, es werden Auger- und Konversionselektronen ausgesandt → LSC

Author: Coral M. Baglin Citation: Nuclear Data Sheets 112, 1163 (2011)

Parent Nucleus	Parent E(level)	Parent Jπ	Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus		ENCOE
⁹³ Nb	30.772	1/2-	16.12 y <i>12</i>	IT: 100 %		⁹³ Nb	Decay Scheme	ENSDF file

Electrons:

	Energy (keV)	Intensity (%)	Dose (MeV/Bq-s)		
Auger L	2.15	81.1 % 3	0.001743 7		
CE K	11.784 20	15.3 % 3	0.00180 4		
Auger K	14.0	3.81 % 10	5.33E-4 <i>14</i>		
CE L	28.072 20	68.0 % <i>8</i>	0.01909 22		
CE M	30.302 20	14.7 % 3	0.00445 9		
CE N	30.712 20	1.91 % 4	5.87E-4 <i>12</i>		

Gamma and X-ray radiation:

	nergy keV)	Intensity (%)	Dose (MeV/Bq-s)	
XR l	2.17	2.91 % 8	6.32E-5 18	
XR kα2	16.521	3.35 % 11	5.54E-4 19	
XR kα1	16.615	6.40 % <i>22</i>	0.00106 4	
XR kβ3	18.607	0.502 % 17	9.3E-5 3	
XR kβ1	18.623	0.97 % 3	1.81E-4 6	
XR kβ2	18.952	0.220 % 7	4.18E-5 <i>14</i>	
	30.77 2	5.91E-4 % <i>9</i>	1.82E-7 3	

Bestimmung von Nb-93m: Trennung über TK 400

- Aliquot der Aufschlusslösung
- Eisenhydroxid-Mitfällung und Abfiltrieren (Schwarzband)
- Niederschlag Lösen in 11 M HCI
- Trennung über TK 400, Nb wird zurückgehalten
- Elution von Nb mit 0,05 M HCI

"TK400 Resin ist ein extraktionschromatographisches Resin, welches aus einem mit Oktanol imprägnierten Trägermaterial besteht"

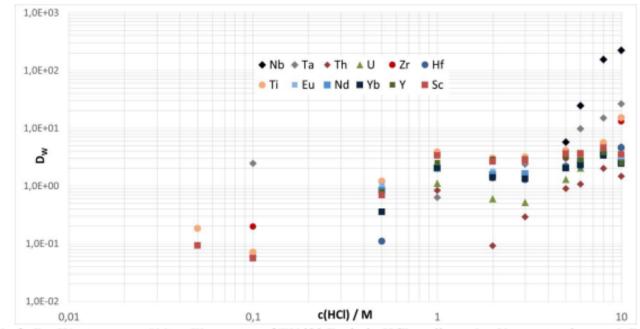
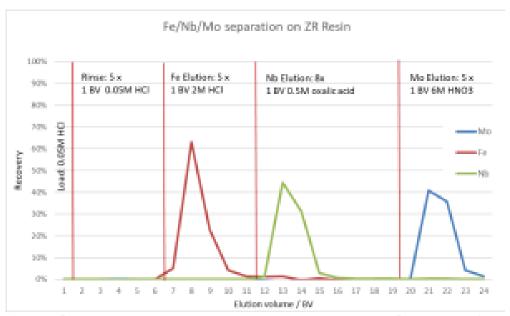
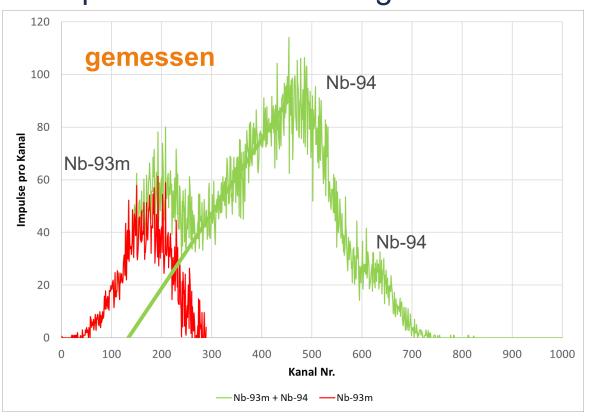
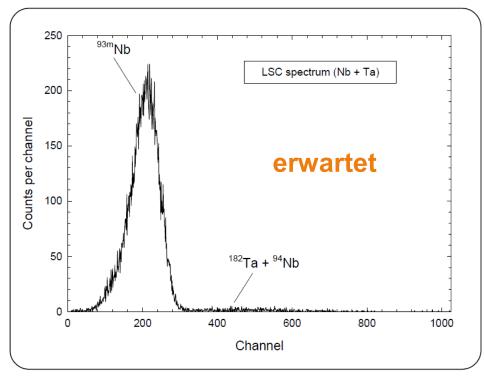


Abb. 3: Dw Werte ausgewählter Elemente auf TK400 Resin in HCl variierender Konzentration nach Dirks et al.7

Bestimmung von Nb-93m Aufreinigung über ZR resin

- Eindampfen zur Trockne (Vorsicht Nb₂O₅)
- Lösen in 2 M HCl
- Trennung über ZR resin, Nb wird zurückgehalten
- Eultion von Nb mit 0,1 M Oxalsäure
- Ausbeutebestimmung über Nb-94 (Gammaspektrometrie) oder Nb-Element
- Zugabe von Szintillator (Quicksafe A, Zinsser)
- LSC Messung (Quantulus 1220)


Abb. 8: Trennung von Fe, Nb und Mo auf ZR Resin

"Das ZR Resin basiert auf der Hydroxamat Funktionalität, welche häufig für die Abtrennung von Zirkonium, hauptsächlich von Y-Targets für späteren Gebrauch in radiopharmazeutischen Anwendungen, eingesetzt wird"

LSC-Spektrum: Bestimmung von Nb-93m in Zircaloy

Tom Serén & Tommi Kekki: Retrospective dosimetry based on niobium extraction and counting - VTT's contribution to the RETROSPEC Project, 2003

- Efficiency: es gibt keinen Nb-93m-Standard, aber man kann annähernd 100% annehmen (Günther, E., & Schötzig, U., Activity determination of ^{93m}Nb. Nuclear Instruments and Methods in Physics Research A312 (1992), 132–135)
- Nb-94 stört die Bestimmung von Nb-93m. Je älter die Probe ist, desto ungünstiger ist das Aktivitätsverhältnis. Es musste eine Spektrenentfaltung vorgenommen werden.

Nb-93m-Ergebnisse

	Aliquot 1 Nb	Aliquot 2 Nb	Aliquote 3 Nb
A _{sp} [Bq/g]	4.20E+02	4.62E+02	4.53E+02
uncertainty [%]	25	25	25
yield [%]	74	72	72
detection limit [Bq/g]	3.24E+00	1.65E+00	5.57E-01
mass [g]	5.43E-03	1.10E-02	3.26E-02
t _m [s]	3600	3600	3600

Zr-93

- Zr ist Reaktorstrukturkomponenten enthalten (z.B. Zircaloy)
- Zr-93 ist ein langlebiger Betaemitter (t_{1/2} = 1,6x10⁶ Jahre), es wird gemäß ⁹²Zr(n,γ)⁹³Zr gebildet
- Die Bestimmung mittels LSC ist möglich

Dataset #1:

Author: Coral M. Baglin Citation: Nuclear Data Sheets 112, 1163 (2011)

- 1	Parent Nucleus			Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus		ENCDE
	⁹³ Zr	0	5/2+	1.61×10 ⁺⁶ y 5	β-: 100 %	90.8 16	⁹³ Nb	Decay Scheme	ENSDF file

Beta-:

Energy (keV)	End-point energy (keV)	Intensity (%)	Dose (MeV/Bq-s)
18.9 6	60.0 16	73 % 6	0.0138 12
23.8 4	90.8 16	27 % 6	0.0064 14

Mean beta- energy: 20 keV 3, total beta- intensity: 100 % 8, mean beta- dose: 0.020 MeV/Bq-s 3 <u>Electrons</u>:

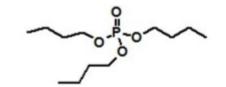
	Energy (keV)	Intensity (%)	Dose (MeV/Bq-s)		
Auger L	2.15	59.2 % 10	0.001272 21		
CE K	11.784 20	11.2 % 9	0.00132 11		
Auger K	14.0	2.78 % 24	3.9E-4 3		
CE L	28.072 20	50 % <i>4</i>	0.0139 12		
CE M	30.302 20	10.7 % 9	0.0033 <i>3</i>		
CE N	30.712 20	1.39 % 12	4.3E-4 4		

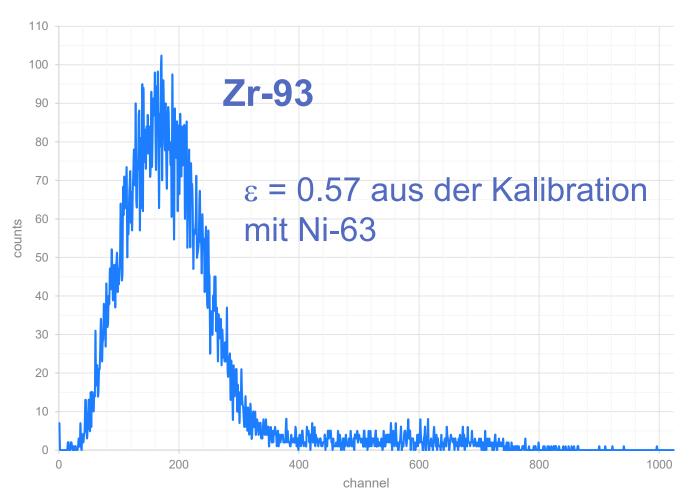
Bestimmung von Zr-93: Trennung über TK 400, TBP resin und ZR resin

- Aliquot der Aufschlusslösung
- Eisenhydroxid-Mitfällung und Abfiltrieren (Schwarzband), hierbei Abtrennung von Ni-63
- Niederschlag Lösen in 11 M HCI
- Trennung über TK 400, Nb wird zurückgehalten, Zr läuft durch
- Eindampfen der Lösung und Aufnehmen in 2 M HCl
- Trennung über TBP resin, Sn wird zurückgehalten, Zr läuft durch
- Trennung über ZR resin, Zr wird zurückgehalten
- Elution mit 0,1 M Oxalsäure
- Zugabe von Szintillator (Quicksafe A, Zinsser)
- LSC Messung (Quantulus 1220)

TBP RESIN

The TBP resin is comprised of an inert support impregnated with Tributylphosphate (TBP, see fig. 1).




Figure 1: TriButylPhosphate (TBP)

TBP is a widely used extractant, it e.g. finds application in the Purex process, the reprocessing of U and Pu from spent fuel. Other applications include e.g. the separation of yttrium for analytical purpose.

LSC-Spektrum: Bestimmung von Zr-93 in Zircaloy

- Es existiert derzeit kein Zr-93-Referenzmaterial
- Die Efficiency kann aus der Kalibrierung mit Ni-63 entnommen werden, siehe Literatur

- S. Dulanská, B. Remenec, V. Gardoňová, L. Mátel: J. Radioanal. Nucl. Chem. (2012) 293:635-640, Determination of ⁹³Zr in radioactive waste using ion exchange techniques
- R. P. G. Monteiro, T. C. Oliveira, Â. M. Amaral, R. M. Mingote: 2009 International Nuclear Atlantic Conference – INAC 2009, ISBN: 978-85-99141-03-8, Radiochemical determination of ⁹³Zr in low and intermediate nuclear wastes

Zr-93-Ergebnisse

	Aliquot 1 Zr	Aliquot 2 Zr	Aliquote 3 Zr
A _{sp} [Bq/g]	2.93E+02	2.68E+02	2.88E+02
uncertainty [%]	25	25	25
yield [%]	40	19	12
detection limit [Bq/g]	8.25E+00	4.37E+00	2.86E+00
mass [g]	5.52E-03	2.19E-02	3.28E-02
t _m [s]	5400	5400	21600

Sn-121m

- Sn ist Reaktorstrukturkomponenten enthalten (z.B. Zircaloy)
- Sn-121m wird durch Neutronenaktivierung gebildet, kann aber auch als Spaltprdoukt vorkommen.
- Sn-121m ist ein Betaemitter ($t_{1/2}$ = 43,9 Jahre)
- Sn-121m zerfällt zu 77,6% in Sn-121 (IT) und zu 22,4% über Betazerfall zu Sb-121
- Betaendpunktsenergie 360 keV, die Bestimmung mittels LSC ist möglich
- Ein weiteres wichtiges Sn-Nuklid in Proben aus dem Nuklearbereich ist das langlebige Sn-126 (t1/2 = 2.18×10⁵ Jahre), mit einer Betaendpunktsenergie bei 70 keV und einer Röntgenlinie bei 88 keV.

Bestimmung von Sn-121m TBP resin und ZR resin

- Aliquot der Aufschlusslösung
- Eisenhydroxid-Mitfällung und Abfiltrieren (Schwarzband)
- Sn verbleibt im Filtrat (amphoter)
- Eindampfen des Filtrats und Aufnehmen in 2 M HCl
- Trennung über TBP resin, Sn wird zurückgehalten
- Elution mit 0,1 M HCl
- Ausbeutebestimmung über Sn-Element
- Zugabe von Szintillator (Quicksafe A, Zinsser)
- LSC Messung (Quantulus 1220)

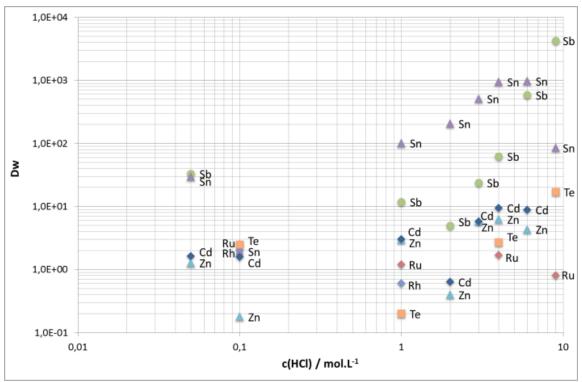
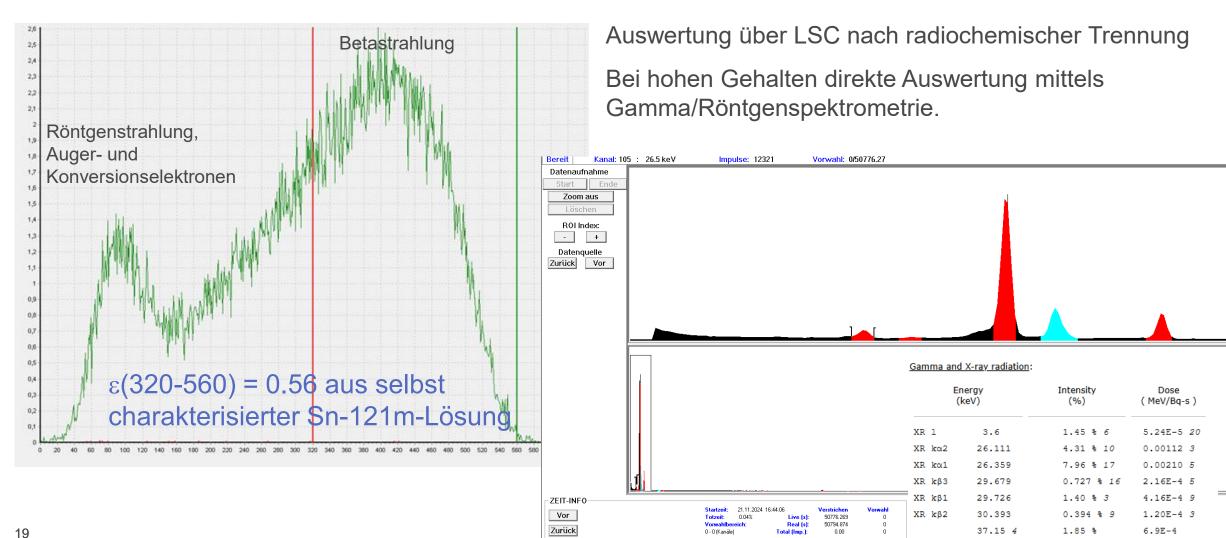



Figure 6: D_W values of selected elements on TBP resin in HCl according to (1).

Bestimmung von Sn-121m

Sn-121m-Ergebnisse

	Aliquot 1 Sn	Aliquot 2 Sn	Aliquote 3 Sn
A _{sp} [Bq/g]	3.90E+03	3.77E+03	3.86E+03
uncertainty [%]	25	25	25
yield [%]	17	34	40
detection limit [Bq/g]	1.20E+01	3.06+00	1.75E+00
mass [g]	1.10E-02	2.17E-02	3.26E-02
t _m [s]	3600	3600	3600

